Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1985 Dec 1;101(6):2383–2391. doi: 10.1083/jcb.101.6.2383

Regulation of myofibrillar accumulation in chick muscle cultures: evidence for the involvement of calcium and lysosomes in non-uniform turnover of contractile proteins

PMCID: PMC2114019  PMID: 3934180

Abstract

The effect of calcium on myofibrillar turnover in primary chick leg skeletal muscle cultures was examined. Addition of the calcium ionophore A23187 at subcontraction threshold levels (0.38 microM) increased significantly rates of efflux of preloaded 45Ca+2 but had no effect on total protein accumulation. However, A23187 as well as ionomycin caused decreased accumulation of the myofibrillar proteins, myosin heavy chain (MHC), myosin light chain 1f (LC1f), 2f (LC2f), alpha-actin (Ac), and tropomyosin (TM). A23187 increased the degradation rate of LC1f, LC2f, and TM after 24 h. In contrast, the calcium ionophore caused decreased degradation of Ac and troponin-C and had no effect on the degradation of MHC, troponin-T, troponin-I, or alpha, beta-desmin (Dm). In addition, A23187 did not alter degradation of total myotube protein. The ionophore had little or no effect on the synthesis of total myotube proteins, but caused a marked decrease in the synthesis of MHC, LC1f, LC2f, Ac, TM, and Dm after 48 h. The mechanisms involved in calcium-stimulated degradation of the myofibrillar proteins were also investigated. Increased proteolysis appeared to involve a lysosomal pathway, since the effect of the Ca++ ionophore could be blocked by the protease inhibitor leupeptin and the lysosomotropic agents methylamine and chloroquine. The effects of A23187 occur in the presence of serum, a condition in which no lysosomal component of overall protein degradation is detected. The differential effect of A23187 on the degradative rates of the myofibrillar proteins suggests a dynamic structure for the contractile apparatus.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amenta J. S., Hlivko T. J., McBee A. G., Shinozuka H., Brocher S. Specific inhibition by NH4CL of autophagy-associated proteloysis in cultured fibroblasts. Exp Cell Res. 1978 Sep;115(2):357–366. doi: 10.1016/0014-4827(78)90289-6. [DOI] [PubMed] [Google Scholar]
  2. Bandman E., Strohman R. C. Increased K+ inhibits spontaneous contractions reduces myosin accumulation in cultured chick myotubes. J Cell Biol. 1982 Jun;93(3):698–704. doi: 10.1083/jcb.93.3.698. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  4. Brown R. D., Berger K. D., Taylor P. Alpha 1-adrenergic receptor activation mobilizes cellular Ca2+ in a muscle cell line. J Biol Chem. 1984 Jun 25;259(12):7554–7562. [PubMed] [Google Scholar]
  5. Crisona N. J., Strohman R. C. Inhibition of contraction of cultured muscle fibers results in increased turnover of myofibrillar proteins but not of intermediate-filament proteins. J Cell Biol. 1983 Mar;96(3):684–692. doi: 10.1083/jcb.96.3.684. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. David J. D., See W. M., Higginbotham C. A. Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol. 1981 Mar;82(2):297–307. doi: 10.1016/0012-1606(81)90453-x. [DOI] [PubMed] [Google Scholar]
  7. Ebashi S. Excitation-contraction coupling. Annu Rev Physiol. 1976;38:293–313. doi: 10.1146/annurev.ph.38.030176.001453. [DOI] [PubMed] [Google Scholar]
  8. Etlinger J. D., McMullen H., Rieder R. F., Ibrahim A., Janeczko R. A., Marmorstein S. Mechanisms and control of ATP-dependent proteolysis. Prog Clin Biol Res. 1985;180:47–60. [PubMed] [Google Scholar]
  9. Etlinger J. D., Speiser S., Wajnberg E., Glucksman M. J. ATP-dependent proteolysis in erythroid and muscle cells. Acta Biol Med Ger. 1981;40(10-11):1285–1291. [PubMed] [Google Scholar]
  10. Fischman D. A. The synthesis and assembly of myofibrils in embryonic muscle. Curr Top Dev Biol. 1970;5:235–280. doi: 10.1016/s0070-2153(08)60057-5. [DOI] [PubMed] [Google Scholar]
  11. Goldberg A. L., St John A. C. Intracellular protein degradation in mammalian and bacterial cells: Part 2. Annu Rev Biochem. 1976;45:747–803. doi: 10.1146/annurev.bi.45.070176.003531. [DOI] [PubMed] [Google Scholar]
  12. Grinde B. Role of Ca2+ for protein turnover in isolated rat hepatocytes. Biochem J. 1983 Dec 15;216(3):529–536. doi: 10.1042/bj2160529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Halbreich A. Differential effect of Ca+2 on the translation of yeast mitochondrial and some viral RNA'S in an E.coli cell-free system. Biochem Biophys Res Commun. 1979 Jan 15;86(1):78–87. doi: 10.1016/0006-291x(79)90384-x. [DOI] [PubMed] [Google Scholar]
  14. Hershko A., Ciechanover A. Mechanisms of intracellular protein breakdown. Annu Rev Biochem. 1982;51:335–364. doi: 10.1146/annurev.bi.51.070182.002003. [DOI] [PubMed] [Google Scholar]
  15. Horváth B. Z., Gaetjens E. Immunochemical studies on the light chains from skeletal muscle myosin. Biochim Biophys Acta. 1972 May 18;263(3):779–793. doi: 10.1016/0005-2795(72)90062-1. [DOI] [PubMed] [Google Scholar]
  16. Ishiura S. Calcium-dependent proteolysis in living cells. Life Sci. 1981 Sep 14;29(11):1079–1087. doi: 10.1016/0024-3205(81)90194-6. [DOI] [PubMed] [Google Scholar]
  17. Janeczko R. A., Etlinger J. D. Inhibition of intracellular proteolysis in muscle cultures by multiplication-stimulating activity. Comparison of effects of multiplication-stimulating activity and insulin on proteolysis, protein synthesis, amino acid uptake, and sugar transport. J Biol Chem. 1984 May 25;259(10):6292–6297. [PubMed] [Google Scholar]
  18. Kameyama T., Etlinger J. D. Calcium-dependent regulation of protein synthesis and degradation in muscle. Nature. 1979 May 24;279(5711):344–346. doi: 10.1038/279344a0. [DOI] [PubMed] [Google Scholar]
  19. Kay J., Siemankowski L. M., Siemankowski R. F., Greweling J. A., Goll D. E. Degradation of myofibrillar proteins by trypsin-like serine proteinases. Biochem J. 1982 Feb 1;201(2):279–285. doi: 10.1042/bj2010279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. King J., Laemmli U. K. Polypeptides of the tail fibres of bacteriophage T4. J Mol Biol. 1971 Dec 28;62(3):465–477. doi: 10.1016/0022-2836(71)90148-3. [DOI] [PubMed] [Google Scholar]
  21. Kovács A. L., Reith A., Seglen P. O. Accumulation of autophagosomes after inhibition of hepatocytic protein degradation by vinblastine, leupeptin or a lysosomotropic amine. Exp Cell Res. 1982 Jan;137(1):191–201. doi: 10.1016/0014-4827(82)90020-9. [DOI] [PubMed] [Google Scholar]
  22. Lewis S. E., Anderson P., Goldspink D. F. The effects of calcium on protein turnover in skeletal muscles of the rat. Biochem J. 1982 Apr 15;204(1):257–264. doi: 10.1042/bj2040257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Libby P., Goldberg A. L. Comparison of the control and pathways for degradation of the acetylcholine receptor and average protein in cultured muscle cells. J Cell Physiol. 1981 May;107(2):185–194. doi: 10.1002/jcp.1041070204. [DOI] [PubMed] [Google Scholar]
  24. Libby P., Goldberg A. L. Leupeptin, a protease inhibitor, decreases protein degradation in normal and diseased muscles. Science. 1978 Feb 3;199(4328):534–536. doi: 10.1126/science.622552. [DOI] [PubMed] [Google Scholar]
  25. Liu C., Hermann T. E. Characterization of ionomycin as a calcium ionophore. J Biol Chem. 1978 Sep 10;253(17):5892–5894. [PubMed] [Google Scholar]
  26. Matsuda R., Obinata T., Shimada Y. Types of troponin components during development of chicken skeletal muscle. Dev Biol. 1981 Feb;82(1):11–19. doi: 10.1016/0012-1606(81)90424-3. [DOI] [PubMed] [Google Scholar]
  27. Millward D. J., Bates P. C., Brown J. G., Cox M., Giugliano R., Jepson M., Pell J. Role of thyroid, insulin and corticosteroid hormones in the physiological regulation of proteolysis in muscle. Prog Clin Biol Res. 1985;180:531–542. [PubMed] [Google Scholar]
  28. Morkin E. Postnatal muscle fiber assembly: localization of newly synthesized myofibrillar proteins. Science. 1970 Mar 13;167(3924):1499–1501. doi: 10.1126/science.167.3924.1499. [DOI] [PubMed] [Google Scholar]
  29. Morkin E., Yazaki Y., Katagiri T., Laraia P. J. Comparison of the synthesis of the light and heavy chains of adult skeletal myosin. Biochim Biophys Acta. 1973 Oct 26;324(3):420–429. doi: 10.1016/0005-2787(73)90286-4. [DOI] [PubMed] [Google Scholar]
  30. Rasmussen H., Barrett P. Q. Calcium messenger system: an integrated view. Physiol Rev. 1984 Jul;64(3):938–984. doi: 10.1152/physrev.1984.64.3.938. [DOI] [PubMed] [Google Scholar]
  31. Rodemann H. P., Waxman L., Goldberg A. L. The stimulation of protein degradation in muscle by Ca2+ is mediated by prostaglandin E2 and does not require the calcium-activated protease. J Biol Chem. 1982 Aug 10;257(15):8716–8723. [PubMed] [Google Scholar]
  32. Roufa D., Wu F. S., Martonosi A. N. The effect of Ca2+ ionophores upon the synthesis of proteins in cultured skeletal muscle. Biochim Biophys Acta. 1981 May 5;674(2):225–237. doi: 10.1016/0304-4165(81)90380-9. [DOI] [PubMed] [Google Scholar]
  33. Schudt C., Pette D. Ca2+ -ions as coupling agents in enzymatic differentiation and carbohydrate metabolism of cultured muscle cells. Adv Enzyme Regul. 1977 Oct 3;16:121–139. doi: 10.1016/0065-2571(78)90070-5. [DOI] [PubMed] [Google Scholar]
  34. Schudt O., Pette D. Influence of the ionophore A 23 187 on myogenic cell fusion. FEBS Lett. 1975 Nov 1;59(1):36–38. doi: 10.1016/0014-5793(75)80335-8. [DOI] [PubMed] [Google Scholar]
  35. Sugden P. H. The effects of calcium ions, ionophore A23187 and inhibition of energy metabolism on protein degradation in the rat diaphragm and epitrochlearis muscles in vitro. Biochem J. 1980 Sep 15;190(3):593–603. doi: 10.1042/bj1900593. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tischler M. E. Hormonal regulation of protein degradation in skeletal and cardiac muscle. Life Sci. 1981 Jun 8;28(23):2569–2576. doi: 10.1016/0024-3205(81)90713-x. [DOI] [PubMed] [Google Scholar]
  37. Toyo-Oka T., Shimizu T., Masaki T. Inhibition of proteolytic activity of calcium activated neutral protease by leupeptin and antipain. Biochem Biophys Res Commun. 1978 May 30;82(2):484–491. doi: 10.1016/0006-291x(78)90900-2. [DOI] [PubMed] [Google Scholar]
  38. West C. M., Holtzer H. Protein synthesis and degradation in cultured muscle is altered by a phorbol diester tumor promoter. Arch Biochem Biophys. 1982 Dec;219(2):335–350. doi: 10.1016/0003-9861(82)90164-3. [DOI] [PubMed] [Google Scholar]
  39. Wu F. S., Park Y. C., Roufa D., Martonosi A. Selective stimulation of the synthesis of an 80,000-dalton protein by calcium ionophores. J Biol Chem. 1981 Jun 10;256(11):5309–5312. [PubMed] [Google Scholar]
  40. Zak R., Martin A. F., Prior G., Rabinowitz M. Comparison of turnover of several myofibrillar proteins and critical evaluation of double isotope method. J Biol Chem. 1977 May 25;252(10):3430–3435. [PubMed] [Google Scholar]
  41. Zeman R. J., Kameyama T., Matsumoto K., Bernstein P., Etlinger J. D. Regulation of protein degradation in muscle by calcium. Evidence for enhanced nonlysosomal proteolysis associated with elevated cytosolic calcium. J Biol Chem. 1985 Nov 5;260(25):13619–13624. [PubMed] [Google Scholar]
  42. van der Westhuyzen D. R., Matsumoto K., Etlinger J. D. Easily releasable myofilaments from skeletal and cardiac muscles maintained in vitro. Role in myofibrillar assembly and turnover. J Biol Chem. 1981 Nov 25;256(22):11791–11797. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES