Abstract
The subcellular localization of mouse mammary tumor virus (MMTV) glycoproteins was analyzed in infected and cloned rat hepatocarcinoma cells cultured with the MMTV transcriptional inducer dexamethasone. When reacted with protein A-coated erythrocytes in the presence of antisera specific for viral glycoproteins or with fluorescent antisera, only some of the cells acquired surface label. This diversity was dependent on cell anchorage to the substratum. In general, the more rounded, less adherent cells contained the MMTV glycoproteins on their surfaces, whereas the flatter, more adherent cells did not. After a change in adherence, a delay preceded complete remodeling of the plasma membranes. Fluorescent antibody studies of fixed cells and analyses of viral glycoprotein synthesis and shedding using L-[35S]methionine indicated that the different expression of MMTV glycoproteins in round versus flat cells is caused by a switch in posttranslational processing. In round cells, the MMTV-encoded precursor glycoprotein is proteolytically cleaved and then transported to plasma membranes as a complex of two subunits, the smaller being the membrane anchor. In flat adherent cells, the smaller subunit is rapidly degraded in an intracellular organelle and the larger is then secreted into the medium. As indicated by labeling of cells with 125I, the concentrations of several host-encoded plasma membrane components are also influenced by cell anchorage. We propose that this switch in cell surfaces and in secretions dependent upon cell-substratum attachments may be a common control mechanism important for embryogenesis, wound healing, and cancer.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aggeler J., Frisch S. M., Werb Z. Changes in cell shape correlate with collagenase gene expression in rabbit synovial fibroblasts. J Cell Biol. 1984 May;98(5):1662–1671. doi: 10.1083/jcb.98.5.1662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Allan M., Harrison P. Co-expression of differentiation markers in hybrids between Friend cells and lymphoid cells and the influence of the cell shape. Cell. 1980 Feb;19(2):437–447. doi: 10.1016/0092-8674(80)90518-8. [DOI] [PubMed] [Google Scholar]
- Ben-Ze'ev A., Farmer S. R., Penman S. Protein synthesis requires cell-surface contact while nuclear events respond to cell shape in anchorage-dependent fibroblasts. Cell. 1980 Sep;21(2):365–372. doi: 10.1016/0092-8674(80)90473-0. [DOI] [PubMed] [Google Scholar]
- Enat R., Jefferson D. M., Ruiz-Opazo N., Gatmaitan Z., Leinwand L. A., Reid L. M. Hepatocyte proliferation in vitro: its dependence on the use of serum-free hormonally defined medium and substrata of extracellular matrix. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1411–1415. doi: 10.1073/pnas.81.5.1411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Firestone G. L., Payvar F., Yamamoto K. R. Glucocorticoid regulation of protein processing and compartmentalization. Nature. 1982 Nov 18;300(5889):221–225. doi: 10.1038/300221a0. [DOI] [PubMed] [Google Scholar]
- Firestone G. L., Yamamoto K. R. Two classes of mutant mammary tumor virus-infected HTC cell with defects in glucocorticoid-regulated gene expression. Mol Cell Biol. 1983 Feb;3(2):149–160. doi: 10.1128/mcb.3.2.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fitting T., Ruta M., Kabat D. Mutant cells that abnormally process plasma membrane glycoproteins encoded by murine leukemia virus. Cell. 1981 Jun;24(3):847–858. doi: 10.1016/0092-8674(81)90110-0. [DOI] [PubMed] [Google Scholar]
- Folkman J., Moscona A. Role of cell shape in growth control. Nature. 1978 Jun 1;273(5661):345–349. doi: 10.1038/273345a0. [DOI] [PubMed] [Google Scholar]
- Hager J. C., Heppner G. H. Heterogeneity of expression and induction of mouse mammary tumor virus antigens in mouse mammary tumors. Cancer Res. 1982 Nov;42(11):4325–4329. [PubMed] [Google Scholar]
- Kabat D., Ruta M., Murray M. J., Polonoff E. Immunoselection of mutants deficient in cell surface glycoproteins encoded by murine erythroleukemia viruses. Proc Natl Acad Sci U S A. 1980 Jan;77(1):57–61. doi: 10.1073/pnas.77.1.57. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kupfer A., Louvard D., Singer S. J. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2603–2607. doi: 10.1073/pnas.79.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McGrath C. M., Jones R. F. Hormonal induction of mammary tumor viruses and its implications for carcinogenesis. Cancer Res. 1978 Nov;38(11 Pt 2):4112–4125. [PubMed] [Google Scholar]
- Ojakian G. K., Herzlinger D. A. Analysis of epithelial cell surface polarity with monoclonal antibodies. Fed Proc. 1984 May 15;43(8):2208–2216. [PubMed] [Google Scholar]
- Raz A., Ben-Ze'ev A. Modulation of the metastatic capability in B16 melanoma by cell shape. Science. 1983 Sep 23;221(4617):1307–1310. doi: 10.1126/science.6612347. [DOI] [PubMed] [Google Scholar]
- Ringold G. M. Glucocorticoid regulation of mouse mammary tumor virus gene expression. Biochim Biophys Acta. 1979 Dec 19;560(4):487–508. doi: 10.1016/0304-419x(79)90014-3. [DOI] [PubMed] [Google Scholar]
- Ruta M., Kabat D. Plasma membrane glycoproteins encoded by cloned Rauscher and Friend spleen focus-forming viruses. J Virol. 1980 Sep;35(3):844–853. doi: 10.1128/jvi.35.3.844-853.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruta M., Murray M. J., Webb M. C., Kabat D. A murine leukemia virus mutant with a temperature-sensitive defect in membrane glycoprotein synthesis. Cell. 1979 Jan;16(1):77–88. doi: 10.1016/0092-8674(79)90189-2. [DOI] [PubMed] [Google Scholar]
- Sarkar N. H., Racevskis J. Expression and disposition of the murine mammary tumor virus (MuMTV) envelope gene products by murine mammary tumor cells. Virology. 1983 Apr 15;126(1):279–300. doi: 10.1016/0042-6822(83)90479-8. [DOI] [PubMed] [Google Scholar]
- Spiegelman B. M., Ginty C. A. Fibronectin modulation of cell shape and lipogenic gene expression in 3T3-adipocytes. Cell. 1983 Dec;35(3 Pt 2):657–666. doi: 10.1016/0092-8674(83)90098-3. [DOI] [PubMed] [Google Scholar]
- Tartakoff A. M., Vassalli P. Lectin-binding sites as markers of Golgi subcompartments: proximal-to-distal maturation of oligosaccharides. J Cell Biol. 1983 Oct;97(4):1243–1248. doi: 10.1083/jcb.97.4.1243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vlodavsky I., Lui G. M., Gospodarowicz D. Morphological appearance, growth behavior and migratory activity of human tumor cells maintained on extracellular matrix versus plastic. Cell. 1980 Mar;19(3):607–616. doi: 10.1016/s0092-8674(80)80037-7. [DOI] [PubMed] [Google Scholar]
- Watt F. M., Green H. Stratification and terminal differentiation of cultured epidermal cells. Nature. 1982 Feb 4;295(5848):434–436. doi: 10.1038/295434a0. [DOI] [PubMed] [Google Scholar]
- Yang N. S., Park C., Longley C., Furmanski P. Effect of the extracellular matrix on plasminogen activator isozyme activities of human mammary epithelial cells in culture. Mol Cell Biol. 1983 Jun;3(6):982–990. doi: 10.1128/mcb.3.6.982. [DOI] [PMC free article] [PubMed] [Google Scholar]
