Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Jan 1;102(1):246–251. doi: 10.1083/jcb.102.1.246

A novel intermediate filament-associated protein, NAPA-73, that binds to different filament types at different stages of nervous system development

PMCID: PMC2114046  PMID: 3510220

Abstract

The antigen recognized by the E/C8-monoclonal antibody is expressed in various avian embryonic cell types known also to express neurofilament (NF) immunoreactivity. To determine whether the E/C8-antigen corresponds to any of the known NF components, we compared their subcellular locations, immunocross-reactivities, and electrophoretic behaviors. We found that the E/C8-antibody binds to NF bundles in electron microscope preparations of neurons, but does not correspond to any of the known NF proteins by immunological or electrophoretic criteria. Immunoadsorption with the monoclonal antibody resulted in co- purification of a 73,000-D protein with one of the known NF proteins in homogenates from 20-d embryonic chick brains, but with vimentin intermediate filament protein in similarly prepared homogenates from 4- d embryonic chicks. We suggest that the E/C8-antigen is an intermediate filament-associated protein that binds to different filament types at different stages of development. We have named it NAPA-73, an acronym for neurofilament-associated protein, avian-specific, 73,000 D, on the basis of its binding specificity in mature neurons.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett G. S., DiLullo C. Transient expression of a neurofilament protein by replicating neuroepithelial cells of the embryonic chick brain. Dev Biol. 1985 Jan;107(1):107–127. doi: 10.1016/0012-1606(85)90380-x. [DOI] [PubMed] [Google Scholar]
  2. Ciment G., Weston J. A. Early appearance in neural crest and crest-derived cells of an antigenic determinant present in avian neurons. Dev Biol. 1982 Oct;93(2):355–367. doi: 10.1016/0012-1606(82)90123-3. [DOI] [PubMed] [Google Scholar]
  3. Ciment G., Weston J. A. Enteric neurogenesis by neural crest-derived branchial arch mesenchymal cells. 1983 Sep 29-Oct 5Nature. 305(5933):424–427. doi: 10.1038/305424a0. [DOI] [PubMed] [Google Scholar]
  4. Ciment G., Weston J. A. Segregation of developmental abilities in neural-crest-derived cells: identification of partially restricted intermediate cell types in the branchial arches of avian embryos. Dev Biol. 1985 Sep;111(1):73–83. doi: 10.1016/0012-1606(85)90436-1. [DOI] [PubMed] [Google Scholar]
  5. Danto S. I., Fischman D. A. Immunocytochemical analysis of intermediate filaments in embryonic heart cells with monoclonal antibodies to desmin. J Cell Biol. 1984 Jun;98(6):2179–2191. doi: 10.1083/jcb.98.6.2179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gallatin W. M., Weissman I. L., Butcher E. C. A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature. 1983 Jul 7;304(5921):30–34. doi: 10.1038/304030a0. [DOI] [PubMed] [Google Scholar]
  7. Granger B. L., Lazarides E. Expression of the major neurofilament subunit in chicken erythrocytes. Science. 1983 Aug 5;221(4610):553–556. doi: 10.1126/science.6346488. [DOI] [PubMed] [Google Scholar]
  8. Hancock K., Tsang V. C. India ink staining of proteins on nitrocellulose paper. Anal Biochem. 1983 Aug;133(1):157–162. doi: 10.1016/0003-2697(83)90237-3. [DOI] [PubMed] [Google Scholar]
  9. Hollyday M., Hamburger V. An autoradiographic study of the formation of the lateral motor column in the chick embryo. Brain Res. 1977 Aug 26;132(2):197–208. doi: 10.1016/0006-8993(77)90416-4. [DOI] [PubMed] [Google Scholar]
  10. Jacobs M., Choo Q. L., Thomas C. Vimentin and 70K neurofilament protein co-exist in embryonic neurones from spinal ganglia. J Neurochem. 1982 Apr;38(4):969–977. doi: 10.1111/j.1471-4159.1982.tb05337.x. [DOI] [PubMed] [Google Scholar]
  11. Jacobs M., Thomas C. The organization of 10 nm filaments and microtubules in embryonic neurons from spinal ganglia. J Neurocytol. 1982 Aug;11(4):657–669. doi: 10.1007/BF01262430. [DOI] [PubMed] [Google Scholar]
  12. Letourneau P. C. Differences in the organization of actin in the growth cones compared with the neurites of cultured neurons from chick embryos. J Cell Biol. 1983 Oct;97(4):963–973. doi: 10.1083/jcb.97.4.963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Letourneau P. C., Ressler A. H. Inhibition of neurite initiation and growth by taxol. J Cell Biol. 1984 Apr;98(4):1355–1362. doi: 10.1083/jcb.98.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  15. Payette R. F., Bennett G. S., Gershon M. D. Neurofilament expression in vagal neural crest-derived precursors of enteric neurons. Dev Biol. 1984 Oct;105(2):273–287. doi: 10.1016/0012-1606(84)90285-9. [DOI] [PubMed] [Google Scholar]
  16. Raju T., Bignami A., Dahl D. In vivo and in vitro differentiation of neurons and astrocytes in the rat embryo. Immunofluorescence study with neurofilament and glial filament antisera. Dev Biol. 1981 Jul 30;85(2):344–357. doi: 10.1016/0012-1606(81)90266-9. [DOI] [PubMed] [Google Scholar]
  17. Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Smith J., Fauquet M., Ziller C., Le Douarin N. M. Acetylcholine synthesis by mesencephalic neural crest cells in the process of migration in vivo. Nature. 1979 Dec 20;282(5741):853–855. doi: 10.1038/282853a0. [DOI] [PubMed] [Google Scholar]
  19. Tapscott S. J., Bennett G. S., Holtzer H. Neuronal precursor cells in the chick neural tube express neurofilament proteins. Nature. 1981 Aug 27;292(5826):836–838. doi: 10.1038/292836a0. [DOI] [PubMed] [Google Scholar]
  20. Willard M., Simon C. Modulations of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell. 1983 Dec;35(2 Pt 1):551–559. doi: 10.1016/0092-8674(83)90189-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES