Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Jan 1;102(1):104–111. doi: 10.1083/jcb.102.1.104

Heat shock response of the rat lens

PMCID: PMC2114049  PMID: 3941150

Abstract

The sequence relationship between the small heat shock proteins and the eye lens protein alpha-crystallin (Ingolia, T. D., and E. E. Craig, 1982, Proc. Natl. Acad. Sci. USA, 79: 2360-2364) prompted us to subject rat lenses in organ culture to heat shock and other forms of stress. The effects on protein synthesis were followed by labeling with [35S]methionine and analysis by one- and two-dimensional gel electrophoresis and fluorography. Heat shock gave a pronounced induction of a protein that could be characterized as the stress protein SP71. This protein probably corresponds to the major mammalian heat shock protein hsp70. Also two minor proteins of 16 and 85 kD were induced, while the synthesis of a constitutive heat shock-related protein, P73, was considerably increased. The synthesis of SP71 started between 30 and 60 min after heat shock, reached its highest level after 3 h, and had stopped again after 8 h. In rat lenses that were preconditioned by an initial mild heat shock, a subsequent shock did not cause renewed synthesis of SP71. This effect resembles the thermotolerance phenomenon observed in cultured cells. The proline analogue azetidine-2-carboxylic acid, zinc chloride, ethanol, and calcium chloride did not, under the conditions used, induce stress proteins in the rat lens. Sodium arsenite, however, had very much the same effects as heat shock. Calcium ionophore A23187 specifically and effectively induced the synthesis of the glucose-regulated protein GRP78. No special response to stress on crystallin synthesis was noticed.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardwell J. C., Craig E. A. Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci U S A. 1984 Feb;81(3):848–852. doi: 10.1073/pnas.81.3.848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bienz M. Developmental control of the heat shock response in Xenopus. Proc Natl Acad Sci U S A. 1984 May;81(10):3138–3142. doi: 10.1073/pnas.81.10.3138. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonner W. M., Laskey R. A. A film detection method for tritium-labelled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem. 1974 Jul 1;46(1):83–88. doi: 10.1111/j.1432-1033.1974.tb03599.x. [DOI] [PubMed] [Google Scholar]
  4. Cosgrove J. W., Brown I. R. Heat shock protein in mammalian brain and other organs after a physiologically relevant increase in body temperature induced by D-lysergic acid diethylamide. Proc Natl Acad Sci U S A. 1983 Jan;80(2):569–573. doi: 10.1073/pnas.80.2.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Currie R. W., White F. P. Characterization of the synthesis and accumulation of a 71-kilodalton protein induced in rat tissues after hyperthermia. Can J Biochem Cell Biol. 1983 Jun;61(6):438–446. doi: 10.1139/o83-059. [DOI] [PubMed] [Google Scholar]
  6. Currie R. W., White F. P. Trauma-induced protein in rat tissues: a physiological role for a "heat shock" protein? Science. 1981 Oct 2;214(4516):72–73. doi: 10.1126/science.7280681. [DOI] [PubMed] [Google Scholar]
  7. Duncan G., Jacob T. J. Influence of external calcium and glucose on internal total and ionized calcium in the rat lens. J Physiol. 1984 Dec;357:485–493. doi: 10.1113/jphysiol.1984.sp015512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Freedman M. S., Clark B. D., Cruz T. F., Gurd J. W., Brown I. R. Selective effects of LSD and hyperthermia on the synthesis of synaptic proteins and glycoproteins. Brain Res. 1981 Feb 23;207(1):129–145. doi: 10.1016/0006-8993(81)90683-1. [DOI] [PubMed] [Google Scholar]
  9. Hammond G. L., Lai Y. K., Markert C. L. Diverse forms of stress lead to new patterns of gene expression through a common and essential metabolic pathway. Proc Natl Acad Sci U S A. 1982 Jun;79(11):3485–3488. doi: 10.1073/pnas.79.11.3485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Heikkila J. J., Schultz G. A., Iatrou K., Gedamu L. Expression of a set of fish genes following heat or metal ion exposure. J Biol Chem. 1982 Oct 25;257(20):12000–12005. [PubMed] [Google Scholar]
  11. Hickey E. D., Weber L. A. Modulation of heat-shock polypeptide synthesis in HeLa cells during hyperthermia and recovery. Biochemistry. 1982 Mar 30;21(7):1513–1521. doi: 10.1021/bi00536a008. [DOI] [PubMed] [Google Scholar]
  12. Hightower K. R., Reddy V. N. Ca++-induced cataract. Invest Ophthalmol Vis Sci. 1982 Feb;22(2):263–267. [PubMed] [Google Scholar]
  13. Hu T. S., Russell P., Kinoshita J. H. In vitro incubation paralleling changes occurring during mouse cataract formation. Exp Eye Res. 1982 Nov;35(5):521–533. doi: 10.1016/0014-4835(82)90047-1. [DOI] [PubMed] [Google Scholar]
  14. Ingolia T. D., Craig E. A. Four small Drosophila heat shock proteins are related to each other and to mammalian alpha-crystallin. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2360–2364. doi: 10.1073/pnas.79.7.2360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kelley P. M., Schlesinger M. J. Antibodies to two major chicken heat shock proteins cross-react with similar proteins in widely divergent species. Mol Cell Biol. 1982 Mar;2(3):267–274. doi: 10.1128/mcb.2.3.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kim Y. J., Shuman J., Sette M., Przybyla A. Arsenate induces stress proteins in cultured rat myoblasts. J Cell Biol. 1983 Feb;96(2):393–400. doi: 10.1083/jcb.96.2.393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Lee A. S., Bell J., Ting J. Biochemical characterization of the 94- and 78-kilodalton glucose-regulated proteins in hamster fibroblasts. J Biol Chem. 1984 Apr 10;259(7):4616–4621. [PubMed] [Google Scholar]
  19. Li G. C., Hahn G. M. Ethanol-induced tolerance to heat and to adriamycin. Nature. 1978 Aug 17;274(5672):699–701. doi: 10.1038/274699a0. [DOI] [PubMed] [Google Scholar]
  20. Lim L., Hall C., Leung T., Whatley S. The relationship of the rat brain 68 kDa microtubule-associated protein with synaptosomal plasma membranes and with the Drosophila 70 kDa heat-shock protein. Biochem J. 1984 Dec 1;224(2):677–680. doi: 10.1042/bj2240677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lin A. Y., Lee A. S. Induction of two genes by glucose starvation in hamster fibroblasts. Proc Natl Acad Sci U S A. 1984 Feb;81(4):988–992. doi: 10.1073/pnas.81.4.988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lowe D. G., Moran L. A. Proteins related to the mouse L-cell major heat shock protein are synthesized in the absence of heat shock gene expression. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2317–2321. doi: 10.1073/pnas.81.8.2317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Martinez A. A., Meshorer A., Meyer J. L., Hahn G. M., Fajardo L. F., Prionas S. D. Thermal sensitivity and thermotolerance in normal porcine tissues. Cancer Res. 1983 May;43(5):2072–2075. [PubMed] [Google Scholar]
  24. Morimoto R., Fodor E. Cell-specific expression of heat shock proteins in chicken reticulocytes and lymphocytes. J Cell Biol. 1984 Oct;99(4 Pt 1):1316–1323. doi: 10.1083/jcb.99.4.1316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mousa G. Y., Trevithick J. R. Actin in the lens: changes in actin during differentiation of lens epithelial cells in vivo. Exp Eye Res. 1979 Jul;29(1):71–81. doi: 10.1016/0014-4835(79)90167-2. [DOI] [PubMed] [Google Scholar]
  26. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  27. Owers J., Duncan G. The viability of the bovine lens in organ culture. Exp Eye Res. 1979 Jun;28(6):739–742. doi: 10.1016/0014-4835(79)90074-5. [DOI] [PubMed] [Google Scholar]
  28. Russnak R. H., Jones D., Candido E. P. Cloning and analysis of cDNA sequences coding for two 16 kilodalton heat shock proteins (hsps) in Caenorhabditis elegans: homology with the small hsps of Drosophila. Nucleic Acids Res. 1983 May 25;11(10):3187–3205. doi: 10.1093/nar/11.10.3187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schöffl F., Raschke E., Nagao R. T. The DNA sequence analysis of soybean heat-shock genes and identification of possible regulatory promoter elements. EMBO J. 1984 Nov;3(11):2491–2497. doi: 10.1002/j.1460-2075.1984.tb02161.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Slater A., Cato A. C., Sillar G. M., Kioussis J., Burdon R. H. The pattern of protein synthesis induced by heat shock of HeLa cells. Eur J Biochem. 1981 Jul;117(2):341–346. doi: 10.1111/j.1432-1033.1981.tb06343.x. [DOI] [PubMed] [Google Scholar]
  31. Southgate R., Ayme A., Voellmy R. Nucleotide sequence analysis of the Drosophila small heat shock gene cluster at locus 67B. J Mol Biol. 1983 Mar 25;165(1):35–57. doi: 10.1016/s0022-2836(83)80241-1. [DOI] [PubMed] [Google Scholar]
  32. Sredy J., Roy D., Spector A. Identification of two of the major phosphorylated polypeptides of the bovine lens utilizing a lens cAMP-dependent protein kinase system. Curr Eye Res. 1984 Dec;3(12):1423–1431. doi: 10.3109/02713688409000838. [DOI] [PubMed] [Google Scholar]
  33. Stewart-DeHaan P. J., Creighton M. O., Sanwal M., Ross W. M., Trevithick J. R. Effects of vitamin E on cortical cataractogenesis induced by elevated temperature in intact rat lenses in medium 199. Exp Eye Res. 1981 Jan;32(1):51–60. doi: 10.1016/s0014-4835(81)80038-3. [DOI] [PubMed] [Google Scholar]
  34. Suit H. D., Blitzer P. H. Thermally induced resistance to hyperthermic damage. Ann N Y Acad Sci. 1980;335:379–382. doi: 10.1111/j.1749-6632.1980.tb50763.x. [DOI] [PubMed] [Google Scholar]
  35. Tanguay R. M. Genetic regulation during heat shock and function of heat-shock proteins: a review. Can J Biochem Cell Biol. 1983 Jun;61(6):387–394. doi: 10.1139/o83-053. [DOI] [PubMed] [Google Scholar]
  36. Tomarev S. I., Krayev A. S., Skryabin K. G., Bayev A. A., Gause G. G., Jr The nucleotide sequence of a cloned cDNA corresponding to one of the gamma-crystallins from the eye lens of the frog Rana temporaria. FEBS Lett. 1982 Sep 20;146(2):314–318. doi: 10.1016/0014-5793(82)80942-3. [DOI] [PubMed] [Google Scholar]
  37. Wang C., Gomer R. H., Lazarides E. Heat shock proteins are methylated in avian and mammalian cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3531–3535. doi: 10.1073/pnas.78.6.3531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  39. Welch W. J., Feramisco J. R. Nuclear and nucleolar localization of the 72,000-dalton heat shock protein in heat-shocked mammalian cells. J Biol Chem. 1984 Apr 10;259(7):4501–4513. [PubMed] [Google Scholar]
  40. Welch W. J., Garrels J. I., Thomas G. P., Lin J. J., Feramisco J. R. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+-ionophore-regulated proteins. J Biol Chem. 1983 Jun 10;258(11):7102–7111. [PubMed] [Google Scholar]
  41. Wu F. S., Park Y. C., Roufa D., Martonosi A. Selective stimulation of the synthesis of an 80,000-dalton protein by calcium ionophores. J Biol Chem. 1981 Jun 10;256(11):5309–5312. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES