Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Jan 1;102(1):312–319. doi: 10.1083/jcb.102.1.312

Phorbol ester receptors and protein kinase C in primary neuronal cultures: development and stimulation of endogenous phosphorylation

PMCID: PMC2114059  PMID: 3941157

Abstract

Embryonic rat neurons cultured in defined medium, essentially in the absence of glia, were highly enriched in phorbol ester receptors. The neurons displayed a single class of phorbol 12,13-dibutyrate binding sites with a maximum binding capacity, after 10 d in culture, of 18.6 pmol/mg protein and an apparent dissociation constant of 7.1 nM. Phorbol ester binding sites were associated with protein kinase C, which represented a major protein kinase activity in primary neuronal cultures. Ca2+-phosphatidylserine-sensitive phosphorylation of endogenous substrates was more marked than that observed in the presence of cyclic AMP or Ca2+ and calmodulin. Phorbol ester receptors and protein kinase C levels were critically dependent on the culture age. Thus, about a 20-fold increase in binding sites occurred during the first week in culture and was accompanied by a corresponding increase in Ca2+-phosphatidylserine-sensitive protein phosphorylation in soluble neuronal extracts. These changes largely paralleled a similar rise in phorbol ester binding during fetal development in vivo. The apparent induction of phorbol ester receptors was specific relative to other cellular proteins and could be inhibited by cycloheximide or Actinomycin D. Phosphorylation of endogenous substrates in intact cultured neurons paralleled the age-dependent increase in protein kinase C. Furthermore, 32P incorporation into several major phosphoproteins was markedly augmented by treating the neuronal cultures with phorbol esters. Such phosphorylation events may provide a clue to the significance of protein kinase C in developing neurons.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed Z., Walker P. S., Fellows R. E. Properties of neurons from dissociated fetal rat brain in serum-free culture. J Neurosci. 1983 Dec;3(12):2448–2462. doi: 10.1523/JNEUROSCI.03-12-02448.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aloyo V. J., Zwiers H., Gispen W. H. Phosphorylation of B-50 protein by calcium-activated, phospholipid-dependent protein kinase and B-50 protein kinase. J Neurochem. 1983 Sep;41(3):649–653. doi: 10.1111/j.1471-4159.1983.tb04790.x. [DOI] [PubMed] [Google Scholar]
  3. Baraban J. M., Gould R. J., Peroutka S. J., Snyder S. H. Phorbol ester effects on neurotransmission: interaction with neurotransmitters and calcium in smooth muscle. Proc Natl Acad Sci U S A. 1985 Jan;82(2):604–607. doi: 10.1073/pnas.82.2.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Burgess S. K., Trimmer P. A., McCarthy K. D. Autoradiographic quantitation of beta-adrenergic receptors on neural cells in primary cultures. II. Comparison of receptors on various types of immunocytochemically identified cells. Brain Res. 1985 May 27;335(1):11–19. doi: 10.1016/0006-8993(85)90271-9. [DOI] [PubMed] [Google Scholar]
  6. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  7. Cochet C., Gill G. N., Meisenhelder J., Cooper J. A., Hunter T. C-kinase phosphorylates the epidermal growth factor receptor and reduces its epidermal growth factor-stimulated tyrosine protein kinase activity. J Biol Chem. 1984 Feb 25;259(4):2553–2558. [PubMed] [Google Scholar]
  8. Diamond L., O'Brien T. G., Baird W. M. Tumor promoters and the mechanism of tumor promotion. Adv Cancer Res. 1980;32:1–74. doi: 10.1016/s0065-230x(08)60360-7. [DOI] [PubMed] [Google Scholar]
  9. Girard P. R., Mazzei G. J., Wood J. G., Kuo J. F. Polyclonal antibodies to phospholipid/Ca2+-dependent protein kinase and immunocytochemical localization of the enzyme in rat brain. Proc Natl Acad Sci U S A. 1985 May;82(9):3030–3034. doi: 10.1073/pnas.82.9.3030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hsu L., Natyzak D., Laskin J. D. Effects of the tumor promoter 12-O-tetradecanoylphorbol-13-acetate on neurite outgrowth from chick embryo sensory ganglia. Cancer Res. 1984 Oct;44(10):4607–4614. [PubMed] [Google Scholar]
  11. Huang C. K., Hill J. M., Jr, Bormann B. J., Mackin W. M., Becker E. L. Chemotactic factors induced vimentin phosphorylation in rabbit peritoneal neutrophil. J Biol Chem. 1984 Feb 10;259(3):1386–1389. [PubMed] [Google Scholar]
  12. Iwashita S., Fox C. F. Epidermal growth factor and potent phorbol tumor promoters induce epidermal growth factor receptor phosphorylation in a similar but distinctively different manner in human epidermoid carcinoma A431 cells. J Biol Chem. 1984 Feb 25;259(4):2559–2567. [PubMed] [Google Scholar]
  13. Jacobs S., Sahyoun N. E., Saltiel A. R., Cuatrecasas P. Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6211–6213. doi: 10.1073/pnas.80.20.6211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kawamoto S., Hidaka H. Ca2+-activated, phospholipid-dependent protein kinase catalyzes the phosphorylation of actin-binding proteins. Biochem Biophys Res Commun. 1984 Feb 14;118(3):736–742. doi: 10.1016/0006-291x(84)91456-6. [DOI] [PubMed] [Google Scholar]
  15. Kikkawa U., Takai Y., Minakuchi R., Inohara S., Nishizuka Y. Calcium-activated, phospholipid-dependent protein kinase from rat brain. Subcellular distribution, purification, and properties. J Biol Chem. 1982 Nov 25;257(22):13341–13348. [PubMed] [Google Scholar]
  16. Kikkawa U., Takai Y., Tanaka Y., Miyake R., Nishizuka Y. Protein kinase C as a possible receptor protein of tumor-promoting phorbol esters. J Biol Chem. 1983 Oct 10;258(19):11442–11445. [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Marx J. L. A new view of receptor action. Science. 1984 Apr 20;224(4646):271–274. doi: 10.1126/science.6143399. [DOI] [PubMed] [Google Scholar]
  19. May W. S., Jacobs S., Cuatrecasas P. Association of phorbol ester-induced hyperphosphorylation and reversible regulation of transferrin membrane receptors in HL60 cells. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2016–2020. doi: 10.1073/pnas.81.7.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Murphy K. M., Gould R. J., Oster-Granite M. L., Gearhart J. D., Snyder S. H. Phorbol ester receptors: autoradiographic identification in the developing rat. Science. 1983 Dec 2;222(4627):1036–1038. doi: 10.1126/science.6316499. [DOI] [PubMed] [Google Scholar]
  21. Naka M., Nishikawa M., Adelstein R. S., Hidaka H. Phorbol ester-induced activation of human platelets is associated with protein kinase C phosphorylation of myosin light chains. Nature. 1983 Dec 1;306(5942):490–492. doi: 10.1038/306490a0. [DOI] [PubMed] [Google Scholar]
  22. Nestler E. J., Walaas S. I., Greengard P. Neuronal phosphoproteins: physiological and clinical implications. Science. 1984 Sep 21;225(4668):1357–1364. doi: 10.1126/science.6474180. [DOI] [PubMed] [Google Scholar]
  23. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  25. Nishizuka Y. Turnover of inositol phospholipids and signal transduction. Science. 1984 Sep 21;225(4668):1365–1370. doi: 10.1126/science.6147898. [DOI] [PubMed] [Google Scholar]
  26. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  27. Peterfreund R. A., Vale W. W. Picrotoxinin and phorbol-12-myristate-13-acetate stimulate the secretion of multiple forms of somatostatin from cultured rat brain cells. J Neurochem. 1984 Jul;43(1):126–130. doi: 10.1111/j.1471-4159.1984.tb06687.x. [DOI] [PubMed] [Google Scholar]
  28. Por S. B., Huttner W. B. A Mr 70,000 phosphoprotein of sympathetic neurons regulated by nerve growth factor and by depolarization. J Biol Chem. 1984 May 25;259(10):6526–6533. [PubMed] [Google Scholar]
  29. Takai Y., Kishimoto A., Kawahara Y., Minakuchi R., Sano K., Kikkawa U., Mori T., Yu B., Kaibuchi K., Nishizuka Y. Calcium and phosphatidylinositol turnover as signalling for transmembrane control of protein phosphorylation. Adv Cyclic Nucleotide Res. 1981;14:301–313. [PubMed] [Google Scholar]
  30. Takai Y., Kishimoto A., Kikkawa U., Mori T., Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium-activated, phospholipid-dependent protein kinase system. Biochem Biophys Res Commun. 1979 Dec 28;91(4):1218–1224. doi: 10.1016/0006-291x(79)91197-5. [DOI] [PubMed] [Google Scholar]
  31. Turner R. S., Raynor R. L., Mazzei G. J., Girard P. R., Kuo J. F. Developmental studies of phospholipid-sensitive Ca2+-dependent protein kinase and its substrates and of phosphoprotein phosphatases in rat brain. Proc Natl Acad Sci U S A. 1984 May;81(10):3143–3147. doi: 10.1073/pnas.81.10.3143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vandenbark G. R., Kuhn L. J., Niedel J. E. Possible mechanism of phorbol diester-induced maturation of human promyelocytic leukemia cells. J Clin Invest. 1984 Feb;73(2):448–457. doi: 10.1172/JCI111231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Werth D. K., Niedel J. E., Pastan I. Vinculin, a cytoskeletal substrate of protein kinase C. J Biol Chem. 1983 Oct 10;258(19):11423–11426. [PubMed] [Google Scholar]
  34. Wolf M., Sahyoun N., LeVine H., 3rd, Cuatrecasas P. Protein kinase C: rapid enzyme purification and substrate-dependence of the diacylglycerol effect. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1268–1275. doi: 10.1016/0006-291x(84)91229-4. [DOI] [PubMed] [Google Scholar]
  35. Wu W. C., Walaas S. I., Nairn A. C., Greengard P. Calcium/phospholipid regulates phosphorylation of a Mr "87k" substrate protein in brain synaptosomes. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5249–5253. doi: 10.1073/pnas.79.17.5249. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES