Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Feb 1;102(2):420–431. doi: 10.1083/jcb.102.2.420

Expression of several adhesive macromolecules (N-CAM, L1, J1, NILE, uvomorulin, laminin, fibronectin, and a heparan sulfate proteoglycan) in embryonic, adult, and denervated adult skeletal muscle

PMCID: PMC2114068  PMID: 3511069

Abstract

Levels of the neural cell adhesion molecule N-CAM in muscle are regulated in parallel with the susceptibility of muscle to innervation: N-CAM is abundant on the surface of early embryonic myotubes, declines in level as development proceeds, reappears when adult muscles are denervated or paralyzed, and is lost after reinnervation (Covault, J., and J. R. Sanes, 1985, Proc. Natl. Acad. Sci. USA, 82:4544-4548). Here we used immunocytochemical methods to compare this pattern of expression with those of several other molecules known to be involved in cellular adhesion. Laminin, fibronectin, and a basal lamina- associated heparan sulfate proteoglycan accumulate on embryonic myotubes after synapse formation, and their levels change little after denervation. L1, J1, nerve growth factor-inducible large external protein, uvomorulin, and a carbohydrate epitope (L2/HNK-1) shared by several adhesion molecules are undetectable on the surface of embryonic, perinatal, adult, or denervated adult muscle fibers. Thus, of the molecules tested, only N-CAM appears on the surface of muscle cells in parallel with the ability of the muscle cell surface to accept synapses. However, four antigens--N-CAM, J1, fibronectin, and a heparan sulfate proteoglycan--accumulate in interstitial spaces near denervated synaptic sites; regenerating axons traverse these spaces as they preferentially reinnervate original synaptic sites. Of particular interest is J1, antibodies to which block adhesion of central neurons to astrocytes (Kruse, J., G. Keihauer, A. Faissner, R. Timpl, and M. Schachner, 1985, Nature (Lond.), 316:146-148). J1 is associated with collagen and other fibrils in muscle and thus may be an extracellular matrix molecule employed in both the central and peripheral nervous systems.

Full Text

The Full Text of this article is available as a PDF (1.7 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abo T., Balch C. M. A differentiation antigen of human NK and K cells identified by a monoclonal antibody (HNK-1). J Immunol. 1981 Sep;127(3):1024–1029. [PubMed] [Google Scholar]
  2. Akers R. M., Mosher D. F., Lilien J. E. Promotion of retinal neurite outgrowth by substratum-bound fibronectin. Dev Biol. 1981 Aug;86(1):179–188. doi: 10.1016/0012-1606(81)90328-6. [DOI] [PubMed] [Google Scholar]
  3. Chiu A. Y., Sanes J. R. Development of basal lamina in synaptic and extrasynaptic portions of embryonic rat muscle. Dev Biol. 1984 Jun;103(2):456–467. doi: 10.1016/0012-1606(84)90333-6. [DOI] [PubMed] [Google Scholar]
  4. Chou K. H., Ilyas A. A., Evans J. E., Quarles R. H., Jungalwala F. B. Structure of a glycolipid reacting with monoclonal IgM in neuropathy and with HNK-1. Biochem Biophys Res Commun. 1985 Apr 16;128(1):383–388. doi: 10.1016/0006-291x(85)91690-0. [DOI] [PubMed] [Google Scholar]
  5. Cole G. J., Schubert D., Glaser L. Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol. 1985 Apr;100(4):1192–1199. doi: 10.1083/jcb.100.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Covault J., Sanes J. R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc Natl Acad Sci U S A. 1985 Jul;82(13):4544–4548. doi: 10.1073/pnas.82.13.4544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edelman G. M. Cell adhesion molecules. Science. 1983 Feb 4;219(4584):450–457. doi: 10.1126/science.6823544. [DOI] [PubMed] [Google Scholar]
  8. Edgar D., Timpl R., Thoenen H. The heparin-binding domain of laminin is responsible for its effects on neurite outgrowth and neuronal survival. EMBO J. 1984 Jul;3(7):1463–1468. doi: 10.1002/j.1460-2075.1984.tb01997.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Faissner A., Kruse J., Goridis C., Bock E., Schachner M. The neural cell adhesion molecule L1 is distinct from the N-CAM related group of surface antigens BSP-2 and D2. EMBO J. 1984 Apr;3(4):733–737. doi: 10.1002/j.1460-2075.1984.tb01876.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Faissner A., Kruse J., Nieke J., Schachner M. Expression of neural cell adhesion molecule L1 during development, in neurological mutants and in the peripheral nervous system. Brain Res. 1984 Jul;317(1):69–82. doi: 10.1016/0165-3806(84)90141-x. [DOI] [PubMed] [Google Scholar]
  11. Gambke B., Rubinstein N. A. A monoclonal antibody to the embryonic myosin heavy chain of rat skeletal muscle. J Biol Chem. 1984 Oct 10;259(19):12092–12100. [PubMed] [Google Scholar]
  12. Grumet M., Hoffman S., Chuong C. M., Edelman G. M. Polypeptide components and binding functions of neuron-glia cell adhesion molecules. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7989–7993. doi: 10.1073/pnas.81.24.7989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hyafil F., Babinet C., Jacob F. Cell-cell interactions in early embryogenesis: a molecular approach to the role of calcium. Cell. 1981 Nov;26(3 Pt 1):447–454. doi: 10.1016/0092-8674(81)90214-2. [DOI] [PubMed] [Google Scholar]
  14. Hyafil F., Morello D., Babinet C., Jacob F. A cell surface glycoprotein involved in the compaction of embryonal carcinoma cells and cleavage stage embryos. Cell. 1980 Oct;21(3):927–934. doi: 10.1016/0092-8674(80)90456-0. [DOI] [PubMed] [Google Scholar]
  15. Kruse J., Keilhauer G., Faissner A., Timpl R., Schachner M. The J1 glycoprotein--a novel nervous system cell adhesion molecule of the L2/HNK-1 family. Nature. 1985 Jul 11;316(6024):146–148. doi: 10.1038/316146a0. [DOI] [PubMed] [Google Scholar]
  16. Kruse J., Mailhammer R., Wernecke H., Faissner A., Sommer I., Goridis C., Schachner M. Neural cell adhesion molecules and myelin-associated glycoprotein share a common carbohydrate moiety recognized by monoclonal antibodies L2 and HNK-1. Nature. 1984 Sep 13;311(5982):153–155. doi: 10.1038/311153a0. [DOI] [PubMed] [Google Scholar]
  17. Lander A. D., Fujii D. K., Reichardt L. F. Laminin is associated with the "neurite outgrowth-promoting factors" found in conditioned media. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2183–2187. doi: 10.1073/pnas.82.7.2183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lindner J., Rathjen F. G., Schachner M. L1 mono- and polyclonal antibodies modify cell migration in early postnatal mouse cerebellum. 1983 Sep 29-Oct 5Nature. 305(5933):427–430. doi: 10.1038/305427a0. [DOI] [PubMed] [Google Scholar]
  19. Lomo T., Westgaard R. H. Control of ACh sensitivity in rat muscle fibers. Cold Spring Harb Symp Quant Biol. 1976;40:263–274. doi: 10.1101/sqb.1976.040.01.027. [DOI] [PubMed] [Google Scholar]
  20. Manthorpe M., Engvall E., Ruoslahti E., Longo F. M., Davis G. E., Varon S. Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J Cell Biol. 1983 Dec;97(6):1882–1890. doi: 10.1083/jcb.97.6.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Matthew W. D., Patterson P. H. The production of a monoclonal antibody that blocks the action of a neurite outgrowth-promoting factor. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):625–631. doi: 10.1101/sqb.1983.048.01.066. [DOI] [PubMed] [Google Scholar]
  22. Miledi R., Slater C. R. Electrophysiology and electron-microscopy of rat neuromuscular junctions after nerve degeneration. Proc R Soc Lond B Biol Sci. 1968 Feb 27;169(1016):289–306. doi: 10.1098/rspb.1968.0012. [DOI] [PubMed] [Google Scholar]
  23. Mills R. G., Bray J. J. A slow-release technique for inducing prolonged paralysis by tetrodotoxin. Pflugers Arch. 1979 Dec;383(1):67–70. doi: 10.1007/BF00584476. [DOI] [PubMed] [Google Scholar]
  24. Peyriéras N., Hyafil F., Louvard D., Ploegh H. L., Jacob F. Uvomorulin: a nonintegral membrane protein of early mouse embryo. Proc Natl Acad Sci U S A. 1983 Oct;80(20):6274–6277. doi: 10.1073/pnas.80.20.6274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Quarles R. H. Myelin-associated glycoprotein in development and disease. Dev Neurosci. 1983;6(6):285–303. doi: 10.1159/000112356. [DOI] [PubMed] [Google Scholar]
  26. Rathjen F. G., Rutishauser U. Comparison of two cell surface molecules involved in neural cell adhesion. EMBO J. 1984 Feb;3(2):461–465. doi: 10.1002/j.1460-2075.1984.tb01828.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rathjen F. G., Schachner M. Immunocytological and biochemical characterization of a new neuronal cell surface component (L1 antigen) which is involved in cell adhesion. EMBO J. 1984 Jan;3(1):1–10. doi: 10.1002/j.1460-2075.1984.tb01753.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rieger F., Grumet M., Edelman G. M. N-CAM at the vertebrate neuromuscular junction. J Cell Biol. 1985 Jul;101(1):285–293. doi: 10.1083/jcb.101.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Rogers S. L., Letourneau P. C., Palm S. L., McCarthy J., Furcht L. T. Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev Biol. 1983 Jul;98(1):212–220. doi: 10.1016/0012-1606(83)90350-0. [DOI] [PubMed] [Google Scholar]
  30. Rutishauser U. Developmental biology of a neural cell adhesion molecule. Nature. 1984 Aug 16;310(5978):549–554. doi: 10.1038/310549a0. [DOI] [PubMed] [Google Scholar]
  31. Rutishauser U., Grumet M., Edelman G. M. Neural cell adhesion molecule mediates initial interactions between spinal cord neurons and muscle cells in culture. J Cell Biol. 1983 Jul;97(1):145–152. doi: 10.1083/jcb.97.1.145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Salton S. R., Richter-Landsberg C., Greene L. A., Shelanski M. L. Nerve growth factor-inducible large external (NILE) glycoprotein: studies of a central and peripheral neuronal marker. J Neurosci. 1983 Mar;3(3):441–454. doi: 10.1523/JNEUROSCI.03-03-00441.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Salton S. R., Shelanski M. L., Greene L. A. Biochemical properties of the nerve growth factor-inducible large external (NILE) glycoprotein. J Neurosci. 1983 Dec;3(12):2420–2430. doi: 10.1523/JNEUROSCI.03-12-02420.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Sanes J. R., Chiu A. Y. The basal lamina of the neuromuscular junction. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):667–678. doi: 10.1101/sqb.1983.048.01.070. [DOI] [PubMed] [Google Scholar]
  35. Sanes J. R. Laminin for axonal guidance? 1985 Jun 27-Jul 3Nature. 315(6022):714–715. doi: 10.1038/315714a0. [DOI] [PubMed] [Google Scholar]
  36. Sanes J. R. Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. J Cell Biol. 1982 May;93(2):442–451. doi: 10.1083/jcb.93.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Sanes J. R., Marshall L. M., McMahan U. J. Reinnervation of muscle fiber basal lamina after removal of myofibers. Differentiation of regenerating axons at original synaptic sites. J Cell Biol. 1978 Jul;78(1):176–198. doi: 10.1083/jcb.78.1.176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sanes J. R. More nerve growth factors? Nature. 1984 Feb 9;307(5951):500–500. doi: 10.1038/307500a0. [DOI] [PubMed] [Google Scholar]
  39. Scherer S. S., Easter S. S., Jr Degenerative and regenerative changes in the trochlear nerve of goldfish. J Neurocytol. 1984 Aug;13(4):519–565. doi: 10.1007/BF01148079. [DOI] [PubMed] [Google Scholar]
  40. Schuller-Petrovic S., Gebhart W., Lassmann H., Rumpold H., Kraft D. A shared antigenic determinant between natural killer cells and nervous tissue. Nature. 1983 Nov 10;306(5939):179–181. doi: 10.1038/306179a0. [DOI] [PubMed] [Google Scholar]
  41. Stallcup W. B., Beasley L. Involvement of the nerve growth factor-inducible large external glycoprotein (NILE) in neurite fasciculation in primary cultures of rat brain. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1276–1280. doi: 10.1073/pnas.82.4.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sweadner K. J. Post-translational modification and evoked release of two large surface proteins of sympathetic neurons. J Neurosci. 1983 Dec;3(12):2504–2517. doi: 10.1523/JNEUROSCI.03-12-02504.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Vestweber D., Kemler R. Rabbit antiserum against a purified surface glycoprotein decompacts mouse preimplantation embryos and reacts with specific adult tissues. Exp Cell Res. 1984 May;152(1):169–178. doi: 10.1016/0014-4827(84)90241-6. [DOI] [PubMed] [Google Scholar]
  44. Vestweber D., Ocklind C., Gossler A., Odin P., Obrink B., Kemler R. Comparison of two cell-adhesion molecules, uvomorulin and cell-CAM 105. Exp Cell Res. 1985 Apr;157(2):451–461. doi: 10.1016/0014-4827(85)90130-2. [DOI] [PubMed] [Google Scholar]
  45. Villiger B., Kelley D. G., Engleman W., Kuhn C., 3rd, McDonald J. A. Human alveolar macrophage fibronectin: synthesis, secretion, and ultrastructural localization during gelatin-coated latex particle binding. J Cell Biol. 1981 Sep;90(3):711–720. doi: 10.1083/jcb.90.3.711. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES