Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Feb 1;102(2):568–575. doi: 10.1083/jcb.102.2.568

Major loss of junctional coupling during mitosis in early mouse embryos

PMCID: PMC2114075  PMID: 2868015

Abstract

Junctional coupling was assessed during the transition from the fourth to the fifth cell cycle of mouse embryogenesis by injection of the dye carboxyfluorescein and by measurement of electrical continuity between cells. Junctional coupling, which arises de novo in early 8-cell mouse embryos, subsequently becomes reduced towards the end of the cell cycle as the blastomeres enter into mitosis. Arrest of the cell cycle in metaphase by nocodazole, an inhibitor of tubulin polymerization, reveals that cell coupling becomes undetectable at mitosis. Junctional coupling then is resumed during interphase of the 16-cell stage. Nocodazole itself has no effect on junctional coupling in interphase cells, regardless of the extent of intercellular flattening, whereas taxol, a microtubule-stabilizing agent, does reduce the extent of coupling in interphase cells.

Full Text

The Full Text of this article is available as a PDF (1,003.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Calarco P. G., Epstein C. J. Cell surface changes during preimplantation development in the mouse. Dev Biol. 1973 May;32(1):208–213. doi: 10.1016/0012-1606(73)90233-9. [DOI] [PubMed] [Google Scholar]
  2. Ducibella T., Albertini D. F., Anderson E., Biggers J. D. The preimplantation mammalian embryo: characterization of intercellular junctions and their appearance during development. Dev Biol. 1975 Aug;45(2):231–250. doi: 10.1016/0012-1606(75)90063-9. [DOI] [PubMed] [Google Scholar]
  3. Ducibella T., Anderson E. Cell shape and membrane changes in the eight-cell mouse embryo: prerequisites for morphogenesis of the blastocyst. Dev Biol. 1975 Nov;47(1):45–58. doi: 10.1016/0012-1606(75)90262-6. [DOI] [PubMed] [Google Scholar]
  4. Ducibella T., Ukena T., Karnovsky M., Anderson E. Changes in cell surface and cortical cytoplasmic organization during early embryogenesis in the preimplantation mouse embryo. J Cell Biol. 1977 Jul;74(1):153–167. doi: 10.1083/jcb.74.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fulton B. P., Whittingham D. G. Activation of mammalian oocytes by intracellular injection of calcium. Nature. 1978 May 11;273(5658):149–151. doi: 10.1038/273149a0. [DOI] [PubMed] [Google Scholar]
  6. Goodall H., Johnson M. H. The nature of intercellular coupling within the preimplantation mouse embryo. J Embryol Exp Morphol. 1984 Feb;79:53–76. [PubMed] [Google Scholar]
  7. Goodall H., Johnson M. H. Use of carboxyfluorescein diacetate to study formation of permeable channels between mouse blastomeres. Nature. 1982 Feb 11;295(5849):524–526. doi: 10.1038/295524a0. [DOI] [PubMed] [Google Scholar]
  8. Handyside A. H. Distribution of antibody- and lectin-binding sites on dissociated blastomeres from mouse morulae: evidence for polarization at compaction. J Embryol Exp Morphol. 1980 Dec;60:99–116. [PubMed] [Google Scholar]
  9. Hoebeke J., Van Nijen G., De Brabander M. Interaction of oncodazole (R 17934), a new antitumoral drug, with rat brain tubulin. Biochem Biophys Res Commun. 1976 Mar 22;69(2):319–324. doi: 10.1016/0006-291x(76)90524-6. [DOI] [PubMed] [Google Scholar]
  10. Johnson M. H., Maro B. A dissection of the mechanisms generating and stabilizing polarity in mouse 8- and 16-cell blastomeres: the role of cytoskeletal elements. J Embryol Exp Morphol. 1985 Dec;90:311–334. [PubMed] [Google Scholar]
  11. Johnson M. H., Maro B. The distribution of cytoplasmic actin in mouse 8-cell blastomeres. J Embryol Exp Morphol. 1984 Aug;82:97–117. [PubMed] [Google Scholar]
  12. Keith C. H., Maxfield F. R., Shelanski M. L. Intracellular free calcium levels are reduced in mitotic Pt K2 epithelial cells. Proc Natl Acad Sci U S A. 1985 Feb;82(3):800–804. doi: 10.1073/pnas.82.3.800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lane N. J., Swales L. S. Dispersal of junctional particles, not internalization, during the in vivo disappearance of gap junctions. Cell. 1980 Mar;19(3):579–586. doi: 10.1016/s0092-8674(80)80034-1. [DOI] [PubMed] [Google Scholar]
  14. Lawrence T. S., Beers W. H., Gilula N. B. Transmission of hormonal stimulation by cell-to-cell communication. Nature. 1978 Apr 6;272(5653):501–506. doi: 10.1038/272501a0. [DOI] [PubMed] [Google Scholar]
  15. Lehtonen E. Changes in cell dimensions and intercellular contacts during cleavage-stage cell cycles in mouse embryonic cells. J Embryol Exp Morphol. 1980 Aug;58:231–249. [PubMed] [Google Scholar]
  16. Lo C. W., Gilula N. B. Gap junctional communication in the post-implantation mouse embryo. Cell. 1979 Oct;18(2):411–422. doi: 10.1016/0092-8674(79)90060-6. [DOI] [PubMed] [Google Scholar]
  17. Loewenstein W. R. Junctional intercellular communication: the cell-to-cell membrane channel. Physiol Rev. 1981 Oct;61(4):829–913. doi: 10.1152/physrev.1981.61.4.829. [DOI] [PubMed] [Google Scholar]
  18. Magnuson T., Demsey A., Stackpole C. W. Characterization of intercellular junctions in the preimplantation mouse embryo by freeze-fracture and thin-section electron microscopy. Dev Biol. 1977 Dec;61(2):252–261. doi: 10.1016/0012-1606(77)90296-2. [DOI] [PubMed] [Google Scholar]
  19. Maro B., Johnson M. H., Pickering S. J., Louvard D. Changes in the distribution of membranous organelles during mouse early development. J Embryol Exp Morphol. 1985 Dec;90:287–309. [PubMed] [Google Scholar]
  20. Maro B., Pickering S. J. Microtubules influence compaction in preimplantation mouse embryos. J Embryol Exp Morphol. 1984 Dec;84:217–232. [PubMed] [Google Scholar]
  21. Merk F. B., McNutt N. S. Nexus junctions between dividing and interphase granulosa cells of the rat ovary. J Cell Biol. 1972 Nov;55(2):511–515. doi: 10.1083/jcb.55.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Meyer D. J., Yancey S. B., Revel J. P. Intercellular communication in normal and regenerating rat liver: a quantitative analysis. J Cell Biol. 1981 Nov;91(2 Pt 1):505–523. doi: 10.1083/jcb.91.2.505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. O'Lague P., Dalen H., Rubin H., Tobias C. Electrical coupling: low resistance junctions between mitotic and interphase fibroblasts in tissue culture. Science. 1970 Oct 23;170(3956):464–466. doi: 10.1126/science.170.3956.464. [DOI] [PubMed] [Google Scholar]
  24. Peracchia C. Structural correlates of gap junction permeation. Int Rev Cytol. 1980;66:81–146. doi: 10.1016/s0074-7696(08)61972-5. [DOI] [PubMed] [Google Scholar]
  25. Poenie M., Alderton J., Tsien R. Y., Steinhardt R. A. Changes of free calcium levels with stages of the cell division cycle. Nature. 1985 May 9;315(6015):147–149. doi: 10.1038/315147a0. [DOI] [PubMed] [Google Scholar]
  26. Radu A., Dahl G., Loewenstein W. R. Hormonal regulation of cell junction permeability: upregulation by catecholamine and prostaglandin E1. J Membr Biol. 1982;70(3):239–251. doi: 10.1007/BF01870566. [DOI] [PubMed] [Google Scholar]
  27. Reeve W. J. Cytoplasmic polarity develops at compaction in rat and mouse embryos. J Embryol Exp Morphol. 1981 Apr;62:351–367. [PubMed] [Google Scholar]
  28. Reeve W. J., Ziomek C. A. Distribution of microvilli on dissociated blastomeres from mouse embryos: evidence for surface polarization at compaction. J Embryol Exp Morphol. 1981 Apr;62:339–350. [PubMed] [Google Scholar]
  29. Rose B., Loewenstein W. R. Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: a study with aequorin. J Membr Biol. 1976 Aug 27;28(1):87–119. doi: 10.1007/BF01869692. [DOI] [PubMed] [Google Scholar]
  30. Schantz A. R. Cytosolic free calcium-ion concentration in cleaving embryonic cells of Oryzias latipes measured with calcium-selective microelectrodes. J Cell Biol. 1985 Mar;100(3):947–954. doi: 10.1083/jcb.100.3.947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  32. Schneider-Picard G., Carpentier J. L., Girardier L. Quantitative evaluation of gap junctions in rat brown adipose tissue after cold acclimation. J Membr Biol. 1984;78(2):85–89. doi: 10.1007/BF01869196. [DOI] [PubMed] [Google Scholar]
  33. Shirayoshi Y., Okada T. S., Takeichi M. The calcium-dependent cell-cell adhesion system regulates inner cell mass formation and cell surface polarization in early mouse development. Cell. 1983 Dec;35(3 Pt 2):631–638. doi: 10.1016/0092-8674(83)90095-8. [DOI] [PubMed] [Google Scholar]
  34. Silver R. B., Cole R. D., Cande W. Z. Isolation of mitotic apparatus containing vesicles with calcium sequestration activity. Cell. 1980 Feb;19(2):505–516. doi: 10.1016/0092-8674(80)90525-5. [DOI] [PubMed] [Google Scholar]
  35. Spray D. C., Bennett M. V. Physiology and pharmacology of gap junctions. Annu Rev Physiol. 1985;47:281–303. doi: 10.1146/annurev.ph.47.030185.001433. [DOI] [PubMed] [Google Scholar]
  36. Tadvalkar G., Pinto da Silva P. In vitro, rapid assembly of gap junctions is induced by cytoskeleton disruptors. J Cell Biol. 1983 May;96(5):1279–1287. doi: 10.1083/jcb.96.5.1279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Traub O., Drüge P. M., Willecke K. Degradation and resynthesis of gap junction protein in plasma membranes of regenerating liver after partial hepatectomy or cholestasis. Proc Natl Acad Sci U S A. 1983 Feb;80(3):755–759. doi: 10.1073/pnas.80.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yee A. G., Revel J. P. Loss and reappearance of gap junctions in regenerating liver. J Cell Biol. 1978 Aug;78(2):554–564. doi: 10.1083/jcb.78.2.554. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES