Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Feb 1;102(2):636–646. doi: 10.1083/jcb.102.2.636

Secretory cell actin-binding proteins: identification of a gelsolin- like protein in chromaffin cells

PMCID: PMC2114078  PMID: 3003118

Abstract

Chromaffin cells, secretory cells of the adrenal medulla, have been shown to contain actin and other contractile proteins, which might be involved in the secretory process. Actin and Ca++-sensitive actin- binding proteins were purified from bovine adrenal medulla on affinity columns using DNase-I as a ligand. Buffers that contained decreasing Ca++ concentrations were used to elute three major proteins of 93, 91, and 85 kD. The bulk of the actin was eluted with guanidine-HCl buffer plus some 93- and 91-kD proteins. These Ca++-sensitive regulatory proteins were shown to inhibit the gelation of actin using the low- shear falling ball viscometer and by electron microscopy. Actin filaments were found to be shortened by fragmentation. Using antibody raised against rabbit lung macrophage gelsolin, proteolytic digestion with Staphylococcus V8 protease and two-dimensional gel electrophoresis, the 91-kD actin-binding protein was shown to be a gelsolin-like protein. The 93-kD actin-binding protein also showed cross-reactivity with anti-gelsolin antibody, similar peptide maps, and a basic-shift in pHi indicating that this 93-kD protein is a brevin- like protein, derived from blood present abundantly in adrenal medulla. Purification from isolated chromaffin cells demonstrated the presence of 91- and 85-kD proteins, whereas the 93-kD protein was hardly detectable. The 85-kD protein is not a breakdown product of brevin-like or gelsolin-like proteins. It did not cross-react with anti-gelsolin antibody and showed a very different peptide map after mild digestion with V8 protease. Antibodies were raised against the 93- and 91-kD actin-binding proteins and the 85-kD actin-binding protein. Antibody against the 85-kD protein did not cross-react with 93- and 91-kD proteins and vice versa. In vivo, the cytoskeleton organization of chromaffin secretory cells is not known, but appears to be under the control of the intracellular concentration of free calcium. The ability of calcium to activate the gelsolin-like protein, and as shown elsewhere to alter fodrin localization, provides a mechanism for gel- sol transition that might be essential for granule movement and membrane-membrane interactions involved in the secretory process.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Almazan G., Aunis D., García A. G., Montiel C., Nicolás G. P., Sánchez-García P. Effects of collagenase on the release of [3H]-noradrenaline from bovine cultured adrenal chromaffin cells. Br J Pharmacol. 1984 Apr;81(4):599–610. doi: 10.1111/j.1476-5381.1984.tb16124.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amy C., Kirshner N. 22Na+ uptake and catecholamine secretion by primary cultures of adrenal medulla cells. J Neurochem. 1982 Jul;39(1):132–142. doi: 10.1111/j.1471-4159.1982.tb04711.x. [DOI] [PubMed] [Google Scholar]
  3. Aunis D., Guerold B., Bader M. F., Cieselski-Treska J. Immunocytochemical and biochemical demonstration of contractile proteins in chromaffin cells in culture. Neuroscience. 1980;5(12):2261–2277. doi: 10.1016/0306-4522(80)90142-6. [DOI] [PubMed] [Google Scholar]
  4. Aunis D., Perrin D. Chromaffin granule membrane-F-actin interactions and spectrin-like protein of subcellular organelles: a possible relationship. J Neurochem. 1984 Jun;42(6):1558–1569. doi: 10.1111/j.1471-4159.1984.tb12742.x. [DOI] [PubMed] [Google Scholar]
  5. Bader M. F., Aunis D. The 97-kD alpha-actinin-like protein in chromaffin granule membranes from adrenal medulla: evidence for localization on the cytoplasmic surface and for binding to actin filaments. Neuroscience. 1983 Jan;8(1):165–181. doi: 10.1016/0306-4522(83)90036-2. [DOI] [PubMed] [Google Scholar]
  6. Bader M. F., Ciesielski-Treska J., Thierse D., Hesketh J. E., Aunis D. Immunocytochemical study of microtubules in chromaffin cells in culture and evidence that tubulin is not an integral protein of the chromaffin granule membrane. J Neurochem. 1981 Oct;37(4):917–933. doi: 10.1111/j.1471-4159.1981.tb04479.x. [DOI] [PubMed] [Google Scholar]
  7. Brown S. S., Yamamoto K., Spudich J. A. A 40,000-dalton protein from Dictyostelium discoideum affects assembly properties of actin in a Ca2+-dependent manner. J Cell Biol. 1982 Apr;93(1):205–210. doi: 10.1083/jcb.93.1.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bryan J., Kurth M. C. Actin-gelsolin interactions. Evidence for two actin-binding sites. J Biol Chem. 1984 Jun 25;259(12):7480–7487. [PubMed] [Google Scholar]
  9. Burridge K., Phillips J. H. Association of actin and myosin with secretory granule membranes. Nature. 1975 Apr 10;254(5500):526–529. doi: 10.1038/254526a0. [DOI] [PubMed] [Google Scholar]
  10. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  11. Fowler V. M., Pollard H. B. Chromaffin granule membrane-F-actin interactions are calcium sensitive. Nature. 1982 Jan 28;295(5847):336–339. doi: 10.1038/295336a0. [DOI] [PubMed] [Google Scholar]
  12. Grumet M., Lin S. Purification and characterization of an inhibitor protein with cytochalasin-like activity from bovine adrenal medulla. Biochim Biophys Acta. 1981 Dec 18;678(3):381–387. doi: 10.1016/0304-4165(81)90118-5. [DOI] [PubMed] [Google Scholar]
  13. Harris D. A., Schwartz J. H. Characterization of brevin, a serum protein that shortens actin filaments. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6798–6802. doi: 10.1073/pnas.78.11.6798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Harris H. E., Bamburg J. R., Weeds A. G. Actin filament disassembly in blood plasma. FEBS Lett. 1980 Nov 17;121(1):175–177. doi: 10.1016/0014-5793(80)81291-9. [DOI] [PubMed] [Google Scholar]
  15. Harris H. E., Weeds A. G. Plasma actin depolymerizing factor has both calcium-dependent and calcium-independent effects on actin. Biochemistry. 1983 May 24;22(11):2728–2741. doi: 10.1021/bi00280a022. [DOI] [PubMed] [Google Scholar]
  16. Hartwig J. H., Stossel T. P. Isolation and properties of actin, myosin, and a new actinbinding protein in rabbit alveolar macrophages. J Biol Chem. 1975 Jul 25;250(14):5696–5705. [PubMed] [Google Scholar]
  17. Hesketh J. E., Ciesielski-Treska J., Aunis D. A phase-contrast and immunofluorescence study of adrenal medullary chromaffin cells in culture: neurite formation, actin and chromaffin granule distribution. Cell Tissue Res. 1981;218(2):331–343. doi: 10.1007/BF00210348. [DOI] [PubMed] [Google Scholar]
  18. Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol. 1982 Jul;94(1):129–142. doi: 10.1083/jcb.94.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Isenberg G., Ohnheiser R., Maruta H. 'Cap 90', a 90-kDa Ca2+-dependent F-actin-capping protein from vertebrate brain. FEBS Lett. 1983 Nov 14;163(2):225–229. doi: 10.1016/0014-5793(83)80824-2. [DOI] [PubMed] [Google Scholar]
  20. Katz A. M., Repke D. I., Upshaw J. E., Polascik M. A. Characterization of dog cardiac microsomes. Use of zonal centrifugation to fractionate fragmented sarcoplasmic reticulum, (Na+ + K+)--activated ATPase and mitochondrial fragments. Biochim Biophys Acta. 1970 Jun 30;205(3):473–490. doi: 10.1016/0005-2728(70)90113-1. [DOI] [PubMed] [Google Scholar]
  21. Kenigsberg R. L., Trifaró J. M. Microinjection of calmodulin antibodies into cultured chromaffin cells blocks catecholamine release in response to stimulation. Neuroscience. 1985 Jan;14(1):335–347. doi: 10.1016/0306-4522(85)90183-6. [DOI] [PubMed] [Google Scholar]
  22. Kondo H., Wolosewick J. J., Pappas G. D. The microtrabecular lattice of the adrenal medulla revealed by polyethylene glycol embedding and stereo electron microscopy. J Neurosci. 1982 Jan;2(1):57–65. doi: 10.1523/JNEUROSCI.02-01-00057.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kurth M. C., Bryan J. Platelet activation induces the formation of a stable gelsolin-actin complex from monomeric gelsolin. J Biol Chem. 1984 Jun 25;259(12):7473–7479. [PubMed] [Google Scholar]
  24. Kurth M. C., Wang L. L., Dingus J., Bryan J. Purification and characterization of a gelsolin-actin complex from human platelets. Evidence for Ca2+-insensitive functions. J Biol Chem. 1983 Sep 25;258(18):10895–10903. [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Lee R. W., Mushynski W. E., Trifaró J. M. Two forms of cytoplasmic actin in adrenal chromaffin cells. Neuroscience. 1979;4(6):843–852. doi: 10.1016/0306-4522(79)90013-7. [DOI] [PubMed] [Google Scholar]
  27. Lee R. W., Trifaró J. M. Characterization of anti-actin antibodies and their use in immunocytochemical studies on the localization of actin in adrenal chromaffin cells in culture. Neuroscience. 1981;6(10):2087–2108. doi: 10.1016/0306-4522(81)90048-8. [DOI] [PubMed] [Google Scholar]
  28. Lin S., Cribbs D. H., Wilkins J. A., Casella J. F., Magargal W. W., Lin D. C. The capactins, a class of proteins that cap the ends of actin filaments. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):263–273. doi: 10.1098/rstb.1982.0131. [DOI] [PubMed] [Google Scholar]
  29. Lin S., Wilkins J. A., Cribbs D. H., Grumet M., Lin D. C. Proteins and complexes that affect actin-filament assembly and interactions. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):625–632. doi: 10.1101/sqb.1982.046.01.058. [DOI] [PubMed] [Google Scholar]
  30. Livett B. G., Boksa P., Dean D. M., Mizobe F., Lindenbaum M. H. Use of isolated chromaffin cells to study basic release mechanisms. J Auton Nerv Syst. 1983 Jan;7(1):59–86. doi: 10.1016/0165-1838(83)90069-3. [DOI] [PubMed] [Google Scholar]
  31. Markey F., Persson T., Lindberg U. A 90 000-dalton actin-binding protein from platelets. Comparison with villin and plasma brevin. Biochim Biophys Acta. 1982 Dec 6;709(1):122–133. doi: 10.1016/0167-4838(82)90429-0. [DOI] [PubMed] [Google Scholar]
  32. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  33. Norberg R., Thorstensson R., Utter G., Fagraeus A. F-Actin-depolymerizing activity of human serum. Eur J Biochem. 1979 Oct 15;100(2):575–583. doi: 10.1111/j.1432-1033.1979.tb04204.x. [DOI] [PubMed] [Google Scholar]
  34. Olomucki A., Huc C., Lefébure F., Coué M. Isolation and characterization of human blood platelet gelsolin. FEBS Lett. 1984 Aug 20;174(1):80–85. doi: 10.1016/0014-5793(84)81082-0. [DOI] [PubMed] [Google Scholar]
  35. Perrin D., Aunis D. Reorganization of alpha-fodrin induced by stimulation in secretory cells. Nature. 1985 Jun 13;315(6020):589–592. doi: 10.1038/315589a0. [DOI] [PubMed] [Google Scholar]
  36. Petrucci T. C., Thomas C., Bray D. Isolation of a Ca2+-dependent actin-fragmenting protein from brain, spinal cord, and cultured neurones. J Neurochem. 1983 Jun;40(6):1507–1516. doi: 10.1111/j.1471-4159.1983.tb08119.x. [DOI] [PubMed] [Google Scholar]
  37. Pollard T. D. A falling ball apparatus to measure filament cross-linking. Methods Cell Biol. 1982;24:301–311. doi: 10.1016/s0091-679x(08)60663-9. [DOI] [PubMed] [Google Scholar]
  38. Rosenberg S., Stracher A., Burridge K. Isolation and characterization of a calcium-sensitive alpha-actinin-like protein from human platelet cytoskeletons. J Biol Chem. 1981 Dec 25;256(24):12986–12991. [PubMed] [Google Scholar]
  39. Spudich J. A., Watt S. The regulation of rabbit skeletal muscle contraction. I. Biochemical studies of the interaction of the tropomyosin-troponin complex with actin and the proteolytic fragments of myosin. J Biol Chem. 1971 Aug 10;246(15):4866–4871. [PubMed] [Google Scholar]
  40. Taylor D. L., Fechheimer M. Cytoplasmic structure and contractility: the solation--contraction coupling hypothesis. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):185–197. doi: 10.1098/rstb.1982.0125. [DOI] [PubMed] [Google Scholar]
  41. Thorstensson R., Utter G., Norberg R. Further characterization of the Ca2+-dependent F-actin-depolymerizing protein of human serum. Eur J Biochem. 1982 Aug;126(1):11–16. doi: 10.1111/j.1432-1033.1982.tb06738.x. [DOI] [PubMed] [Google Scholar]
  42. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Trifaró J. M. Common mechanisms of hormone secretion. Annu Rev Pharmacol Toxicol. 1977;17:27–47. doi: 10.1146/annurev.pa.17.040177.000331. [DOI] [PubMed] [Google Scholar]
  44. Trifaró J. M., Lee R. W. Morphological characteristics and stimulus-secretion coupling in bovine adcrenal chromaffin cell cultures. Neuroscience. 1980;5(9):1533–1546. doi: 10.1016/0306-4522(80)90018-4. [DOI] [PubMed] [Google Scholar]
  45. Trifaró J. M., Ulpian C. Isolation and characterization of myosin from the adrenal medulla. Neuroscience. 1976 Dec;1(6):483–488. doi: 10.1016/0306-4522(76)90100-7. [DOI] [PubMed] [Google Scholar]
  46. Verkhovsky A. B., Surgucheva I. G., Gelfand V. I. Phalloidin and tropomyosin do not prevent actin filament shortening by the 90 kD protein-actin complex from brain. Biochem Biophys Res Commun. 1984 Sep 17;123(2):596–603. doi: 10.1016/0006-291x(84)90271-7. [DOI] [PubMed] [Google Scholar]
  47. Wilkins J. A., Lin S. Association of actin with chromaffin granule membranes and the effect of cytochalasin B on the polarity of actin filament elongation. Biochim Biophys Acta. 1981 Mar 20;642(1):55–66. doi: 10.1016/0005-2736(81)90137-1. [DOI] [PubMed] [Google Scholar]
  48. Yin H. L., Albrecht J. H., Fattoum A. Identification of gelsolin, a Ca2+-dependent regulatory protein of actin gel-sol transformation, and its intracellular distribution in a variety of cells and tissues. J Cell Biol. 1981 Dec;91(3 Pt 1):901–906. doi: 10.1083/jcb.91.3.901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Yin H. L., Hartwig J. H., Maruyama K., Stossel T. P. Ca2+ control of actin filament length. Effects of macrophage gelsolin on actin polymerization. J Biol Chem. 1981 Sep 25;256(18):9693–9697. [PubMed] [Google Scholar]
  50. Yin H. L., Kwiatkowski D. J., Mole J. E., Cole F. S. Structure and biosynthesis of cytoplasmic and secreted variants of gelsolin. J Biol Chem. 1984 Apr 25;259(8):5271–5276. [PubMed] [Google Scholar]
  51. Yin H. L., Stossel T. P. Control of cytoplasmic actin gel-sol transformation by gelsolin, a calcium-dependent regulatory protein. Nature. 1979 Oct 18;281(5732):583–586. doi: 10.1038/281583a0. [DOI] [PubMed] [Google Scholar]
  52. Yin H. L., Stossel T. P. Purification and structural properties of gelsolin, a Ca2+-activated regulatory protein of macrophages. J Biol Chem. 1980 Oct 10;255(19):9490–9493. [PubMed] [Google Scholar]
  53. Yin H. L., Zaner K. S., Stossel T. P. Ca2+ control of actin gelation. Interaction of gelsolin with actin filaments and regulation of actin gelation. J Biol Chem. 1980 Oct 10;255(19):9494–9500. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES