Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Feb 1;102(2):551–559. doi: 10.1083/jcb.102.2.551

Effect of membrane splitting on transmembrane polypeptides

PMCID: PMC2114080  PMID: 3944190

Abstract

We investigated the effect of membrane splitting on the primary structure of human erythrocyte membrane polypeptides. Monolayers of intact, chemically unmodified cells were freeze-fractured and examined by one-dimensional SDS PAGE. Silver-stained gels revealed all major polypeptides that stain with Coomassie Blue as well as all bands that stain with periodic acid Schiff's reagent. Both nonglycosylated and glycosylated membrane polypeptides could be detected at concentrations of only a few nanograms per band. Membrane splitting had no effect on the position or number of bands. Monolayers of intact erythrocytes that had been enzymatically radioiodinated with lactoperoxidase were examined by electrophoresis, fluorography, and liquid scintillation counting. Radioactivity was quantified before and after monolayer formation and splitting, and at several stages of gel staining, drying, and fluorography. Although overexposed fluorographs revealed several minor radioiodinated bands in addition to band 3 and the glycophorins, no new bands were detected in split membrane samples derived from intact cells. These observations support the conclusion that neither the band 3 anion channel nor the glycophorin sialoglycoproteins are fragmented during freeze-fracturing. Although both band 3 and glycophorin partition to the cytoplasmic side of the membrane, preliminary quantitative observations suggest an enrichment of glycophorin in the split extracellular "half" membrane. We conclude that the process of membrane splitting by planar monolayer freeze- fracture does not cleave the covalent polypeptide backbone of any erythrocyte membrane protein, peripheral or integral.

Full Text

The Full Text of this article is available as a PDF (1.6 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham G., Low P. S. Covalent labelling of specific membrane carbohydrate residues with fluorescent probes. Biochim Biophys Acta. 1980 Apr 10;597(2):285–291. doi: 10.1016/0005-2736(80)90106-6. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Berry M. J., Samuel C. E. Detection of subnanogram amounts of RNA in polyacrylamide gels in the presence and absence of protein by staining with silver. Anal Biochem. 1982 Jul 15;124(1):180–184. doi: 10.1016/0003-2697(82)90235-4. [DOI] [PubMed] [Google Scholar]
  4. Branton D., Bullivant S., Gilula N. B., Karnovsky M. J., Moor H., Mühlethaler K., Northcote D. H., Packer L., Satir B., Satir P. Freeze-etching nomenclature. Science. 1975 Oct 3;190(4209):54–56. doi: 10.1126/science.1166299. [DOI] [PubMed] [Google Scholar]
  5. Carraway K. L. Covalent labeling of membranes. Biochim Biophys Acta. 1975 Dec 29;415(4):379–410. doi: 10.1016/0304-4157(75)90005-2. [DOI] [PubMed] [Google Scholar]
  6. DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
  7. Dailey H. A., Strittmatter P. Orientation of the carboxyl and NH2 termini of the membrane-binding segment of cytochrome b5 on the same side of phospholipid bilayers. J Biol Chem. 1981 Apr 25;256(8):3951–3955. [PubMed] [Google Scholar]
  8. Dzandu J. K., Deh M. E., Barratt D. L., Wise G. E. Detection of erythrocyte membrane proteins, sialoglycoproteins, and lipids in the same polyacrylamide gel using a double-staining technique. Proc Natl Acad Sci U S A. 1984 Mar;81(6):1733–1737. doi: 10.1073/pnas.81.6.1733. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. EYLAR E. H., MADOFF M. A., BRODY O. V., ONCLEY J. L. The contribution of sialic acid to the surface charge of the erythrocyte. J Biol Chem. 1962 Jun;237:1992–2000. [PubMed] [Google Scholar]
  10. Edwards H. H., Mueller T. J., Morrison M. Distribution of transmembrane polypeptides in freeze fracture. Science. 1979 Mar 30;203(4387):1343–1346. doi: 10.1126/science.424755. [DOI] [PubMed] [Google Scholar]
  11. Fairbanks G., Steck T. L., Wallach D. F. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry. 1971 Jun 22;10(13):2606–2617. doi: 10.1021/bi00789a030. [DOI] [PubMed] [Google Scholar]
  12. Fisher K. A. Analysis of membrane halves: cholesterol. Proc Natl Acad Sci U S A. 1976 Jan;73(1):173–177. doi: 10.1073/pnas.73.1.173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fisher K. A. Monolayer freeze-fracture autoradiography: quantitative analysis of the transmembrane distribution of radioiodinated concanavalin A. J Cell Biol. 1982 Apr;93(1):155–163. doi: 10.1083/jcb.93.1.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Fisher K. A. Spectroscopic assays for measuring quantities of erythrocyte membrane "halves". J Cell Biol. 1982 Jan;92(1):44–52. doi: 10.1083/jcb.92.1.44. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fisher K. A. Split membrane analysis. Annu Rev Physiol. 1980;42:261–273. doi: 10.1146/annurev.ph.42.030180.001401. [DOI] [PubMed] [Google Scholar]
  16. Furthmayr H. Glycophorins A, B, and C: a family of sialoglycoproteins. Isolation and preliminary characterization of trypsin derived peptides. J Supramol Struct. 1978;9(1):79–95. doi: 10.1002/jss.400090109. [DOI] [PubMed] [Google Scholar]
  17. Jones M. N., Nickson J. K. Monosaccharide transport proteins of the human erythrocyte membrane. Biochim Biophys Acta. 1981 Jun 16;650(1):1–20. doi: 10.1016/0304-4157(81)90006-x. [DOI] [PubMed] [Google Scholar]
  18. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Marchesi V. T. Functional proteins of the human red blood cell membrane. Semin Hematol. 1979 Jan;16(1):3–20. [PubMed] [Google Scholar]
  21. Marchesi V. T., Furthmayr H., Tomita M. The red cell membrane. Annu Rev Biochem. 1976;45:667–698. doi: 10.1146/annurev.bi.45.070176.003315. [DOI] [PubMed] [Google Scholar]
  22. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  23. Morrison M., Mueller T. J., Edwards H. H. Protein architecture of the erythrocyte membrane. Prog Clin Biol Res. 1981;51:17–34. [PubMed] [Google Scholar]
  24. Mueller T. J., Morrison M. The transmembrane proteins in the plasma membrane of normal human erythrocytes. J Biol Chem. 1974 Dec 10;249(23):7568–7573. [PubMed] [Google Scholar]
  25. Nermut M. V. The 'cell monolayer technique' in membrane research. Eur J Cell Biol. 1982 Aug;28(1):160–172. [PubMed] [Google Scholar]
  26. Ochs D. Protein contaminants of sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1983 Dec;135(2):470–474. doi: 10.1016/0003-2697(83)90714-5. [DOI] [PubMed] [Google Scholar]
  27. Pinto da Silva P., Parkison C., Dwyer N. Fracture-label:O cytochemistry of freeze-fracture faces in the erythrocyte membrane. Proc Natl Acad Sci U S A. 1981 Jan;78(1):343–347. doi: 10.1073/pnas.78.1.343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ramjeesingh M., Gaarn A., Rothstein A. Pepsin cleavage of band 3 produces its membrane-crossing domains. Biochim Biophys Acta. 1984 Jan 25;769(2):381–389. doi: 10.1016/0005-2736(84)90321-3. [DOI] [PubMed] [Google Scholar]
  29. Silverberg M., Marchesi V. T. The anomalous electrophoretic behavior of the major sialoglycoprotein from the human erythrocyte. J Biol Chem. 1978 Jan 10;253(1):95–98. [PubMed] [Google Scholar]
  30. Sogin D. C., Hinkle P. C. Characterization of the glucose transporter from human erythrocytes. J Supramol Struct. 1978;8(4):447–453. doi: 10.1002/jss.400080407. [DOI] [PubMed] [Google Scholar]
  31. Somerville L. L., Wang K. The ultrasensitive silver "protein" stain also detects nanograms of nucleic acids. Biochem Biophys Res Commun. 1981 Sep 16;102(1):53–58. doi: 10.1016/0006-291x(81)91487-x. [DOI] [PubMed] [Google Scholar]
  32. Steck T. L. The organization of proteins in the human red blood cell membrane. A review. J Cell Biol. 1974 Jul;62(1):1–19. doi: 10.1083/jcb.62.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
  34. da Silva P. P., Torrisi M. R. Freeze-fracture cytochemistry: partition of glycophorin in freeze-fractured human erythrocyte membranes. J Cell Biol. 1982 May;93(2):463–469. doi: 10.1083/jcb.93.2.463. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES