Abstract
The exocytotic exposure and retrieval of an antigen of chromaffin granule membranes were studied with chromaffin cells isolated from bovine adrenal medulla. Cells were incubated with an antiserum against glycoprotein III followed by fluorescein- or gold-labeled anti-IgG. Immunofluorescence on the cell surface was present in a patchy distribution irrespective of whether bivalent antibodies or Fab fragments were used. During subsequent incubation these fluorescent membrane patches were internalized within 45 min. At the ultrastructural level immunogold-labeled patches were present on the surface of stimulated cells. During incubation (5 min to 6 h) these immunolabeled membrane patches became coated, giving rise to coated vesicles and finally to smooth vesicles. These latter vesicles were found spread throughout the cytoplasm including the Golgi region, but Golgi stacks did not become labeled. Part of the immunolabel was transferred to multivesicular bodies, which probably represent a lysosomal pathway. 30 min after incubation immunolabel was also found in electron-dense vesicles apparently representing newly formed chromaffin granules. After 6 h of incubation immunolabel was found in vesicles indistinguishable from mature chromaffin granules. These results provide direct evidence that after exocytosis membranes of chromaffin granules are selectively retrieved from the plasma membrane and are partly recycled to newly formed chromaffin granules, providing a shuttle service from the Golgi region to the plasma membrane.
Full Text
The Full Text of this article is available as a PDF (1.0 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Blaschko H., Firemark H., Smith A. D., Winkler H. Lipids of the adrenal medulla. Lysolecithin, a characteristic constituent of chromaffin granules. Biochem J. 1967 Aug;104(2):545–549. doi: 10.1042/bj1040545. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burgoyne R. D. Mechanisms of secretion from adrenal chromaffin cells. Biochim Biophys Acta. 1984 Jun 25;779(2):201–216. doi: 10.1016/0304-4157(84)90009-1. [DOI] [PubMed] [Google Scholar]
- Dowd D. J., Edwards C., Englert D., Mazurkiewicz J. E., Ye H. Z. Immunofluorescent evidence for exocytosis and internalization of secretory granule membrane in isolated chromaffin cells. Neuroscience. 1983 Nov;10(3):1025–1033. doi: 10.1016/0306-4522(83)90240-3. [DOI] [PubMed] [Google Scholar]
- Farquhar M. G. Multiple pathways of exocytosis, endocytosis, and membrane recycling: validation of a Golgi route. Fed Proc. 1983 May 15;42(8):2407–2413. [PubMed] [Google Scholar]
- Farquhar M. G. Recovery of surface membrane in anterior pituitary cells. Variations in traffic detected with anionic and cationic ferritin. J Cell Biol. 1978 Jun;77(3):R35–R42. doi: 10.1083/jcb.77.3.r35. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer-Colbrie R., Zangerle R., Frischenschlager I., Weber A., Winkler H. Isolation and immunological characterization of a glycoprotein from adrenal chromaffin granules. J Neurochem. 1984 Apr;42(4):1008–1016. doi: 10.1111/j.1471-4159.1984.tb12704.x. [DOI] [PubMed] [Google Scholar]
- Goding J. W. Conjugation of antibodies with fluorochromes: modifications to the standard methods. J Immunol Methods. 1976;13(3-4):215–226. doi: 10.1016/0022-1759(76)90068-5. [DOI] [PubMed] [Google Scholar]
- Herzog V. Endocytosis in secretory cells. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):67–72. doi: 10.1098/rstb.1981.0172. [DOI] [PubMed] [Google Scholar]
- Herzog V., Farquhar M. G. Luminal membrane retrieved after exocytosis reaches most golgi cisternae in secretory cells. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5073–5077. doi: 10.1073/pnas.74.11.5073. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herzog V., Reggio H. Pathways of endocytosis from luminal plasma membrane in rat exocrine pancreas. Eur J Cell Biol. 1980 Jun;21(2):141–150. [PubMed] [Google Scholar]
- Holtzman E., Dominitz R. Cytochemical studies of lysosomes, golgi apparatus and endoplasmic reticulum in secretion and protein uptake by adrenal medulla cells of the rat. J Histochem Cytochem. 1968 May;16(5):320–336. doi: 10.1177/16.5.320. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lingg G., Fischer-Colbrie R., Schmidt W., Winkler H. Exposure of an antigen of chromaffin granules on cell surface during exocytosis. Nature. 1983 Feb 17;301(5901):610–611. doi: 10.1038/301610a0. [DOI] [PubMed] [Google Scholar]
- Nagasawa J., Douglas W. W. Thorium dioxide uptake into adrenal medullary cells and the problem of recapture of granule membrane following exocytosis. Brain Res. 1972 Feb 11;37(1):141–145. doi: 10.1016/0006-8993(72)90356-3. [DOI] [PubMed] [Google Scholar]
- Nijjar M. S., Hawthorne J. N. A plasma membrane fraction from bovine adrenal medulla: preparation, marker enzyme studies and phospholipid composition. Biochim Biophys Acta. 1974 Oct 29;367(2):190–201. doi: 10.1016/0005-2736(74)90042-x. [DOI] [PubMed] [Google Scholar]
- PORTER R. R. The hydrolysis of rabbit y-globulin and antibodies with crystalline papain. Biochem J. 1959 Sep;73:119–126. doi: 10.1042/bj0730119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Patzak A., Böck G., Fischer-Colbrie R., Schauenstein K., Schmidt W., Lingg G., Winkler H. Exocytotic exposure and retrieval of membrane antigens of chromaffin granules: quantitative evaluation of immunofluorescence on the surface of chromaffin cells. J Cell Biol. 1984 May;98(5):1817–1824. doi: 10.1083/jcb.98.5.1817. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. H., Burridge K., Wilson S. P., Kirshner N. Visualization of the exocytosis/endocytosis secretory cycle in cultured adrenal chromaffin cells. J Cell Biol. 1983 Dec;97(6):1906–1917. doi: 10.1083/jcb.97.6.1906. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sperk G., Berger M., Hörtnagl H., Hornykiewicz O. Kainic acid-induced changes of serotonin and dopamine metabolism in the striatum and substantia nigra of the rat. Eur J Pharmacol. 1981 Sep 24;74(4):279–286. doi: 10.1016/0014-2999(81)90046-7. [DOI] [PubMed] [Google Scholar]
- Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]
- Suchard S. J., Corcoran J. J., Pressman B. C., Rubin R. W. Evidence for secretory granule membrane recycling in cultured adrenal chromaffin cells. Cell Biol Int Rep. 1981 Oct;5(10):953–962. doi: 10.1016/0309-1651(81)90211-3. [DOI] [PubMed] [Google Scholar]
- VENABLE J. H., COGGESHALL R. A SIMPLIFIED LEAD CITRATE STAIN FOR USE IN ELECTRON MICROSCOPY. J Cell Biol. 1965 May;25:407–408. doi: 10.1083/jcb.25.2.407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wildmann J., Dewair M., Matthaei H. Immunochemical evidence for exocytosis in isolated chromaffin cells after stimulation with depolarizing agents. J Neuroimmunol. 1981 Sep;1(3):353–364. doi: 10.1016/0165-5728(81)90038-2. [DOI] [PubMed] [Google Scholar]
- Willingham M. C., Hanover J. A., Dickson R. B., Pastan I. Morphologic characterization of the pathway of transferrin endocytosis and recycling in human KB cells. Proc Natl Acad Sci U S A. 1984 Jan;81(1):175–179. doi: 10.1073/pnas.81.1.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willingham M. C., Pastan I. Endocytosis and membrane traffic in cultured cells. Recent Prog Horm Res. 1984;40:569–587. doi: 10.1016/b978-0-12-571140-1.50018-9. [DOI] [PubMed] [Google Scholar]
- Willingham M. C., Pastan I. Formation of receptosomes from plasma membrane coated pits during endocytosis: analysis by serial sections with improved membrane labeling and preservation techniques. Proc Natl Acad Sci U S A. 1983 Sep;80(18):5617–5621. doi: 10.1073/pnas.80.18.5617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Winkler H., Schöpf J. A., Hörtnagl H. Bovine adrenal medulla: subcellular distribution of newly synthesised catecholamines, nucleotides and chromogranins. Naunyn Schmiedebergs Arch Pharmacol. 1972;273(1):43–61. doi: 10.1007/BF00508079. [DOI] [PubMed] [Google Scholar]
- Winkler H. The biogenesis of adrenal chromaffin granules. Neuroscience. 1977;2(5):657–683. doi: 10.1016/0306-4522(77)90022-7. [DOI] [PubMed] [Google Scholar]
- Winkler H., Westhead E. The molecular organization of adrenal chromaffin granules. Neuroscience. 1980;5(11):1803–1823. doi: 10.1016/0306-4522(80)90031-7. [DOI] [PubMed] [Google Scholar]
- Yamashiro D. J., Tycko B., Fluss S. R., Maxfield F. R. Segregation of transferrin to a mildly acidic (pH 6.5) para-Golgi compartment in the recycling pathway. Cell. 1984 Jul;37(3):789–800. doi: 10.1016/0092-8674(84)90414-8. [DOI] [PubMed] [Google Scholar]