Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Feb 1;102(2):432–441. doi: 10.1083/jcb.102.2.432

Evidence for a novel enzymatic mechanism of neural crest cell migration on extracellular glycoconjugate matrices

PMCID: PMC2114083  PMID: 3080436

Abstract

Migrating embryonic cells have high levels of cell surface galactosyltransferase (GalTase) activity. It has been proposed that GalTase participates during migration by recognizing and binding to terminal N-acetylglucosamine (GlcNAc) residues on glycoconjugates within the extracellular matrix (Shur, B. D., 1982, Dev. Biol. 91:149- 162). We tested this hypothesis using migrating neural crest cells as an in vitro model system. Cell surface GalTase activity was perturbed using three independent sets of reagents, and the effects on cell migration were analyzed by time-lapse microphotography. The GalTase modifier protein, alpha-lactalbumin (alpha-LA), was used to inhibit surface GalTase binding to terminal GlcNAc residues in the underlying substrate. alpha-LA inhibited neural crest cell migration on basal lamina-like matrices in a dose-dependent manner, while under identical conditions, alpha-LA had no effect on cell migration on fibronectin. Control proteins, such as lysozyme (structurally homologous to alpha- LA) and bovine serum albumin, did not effect migration on either matrix. Second, the addition of competitive GalTase substrates significantly inhibited neural crest cell migration on basal lamina- like matrices, but as above, had no effect on migration on fibronectin. Comparable concentrations of inappropriate sugars also had no effect on cell migration. Third, addition of the GalTase catalytic substrate, UDPgalactose, produced a dose-dependent increase in the rate of cell migration. Under identical conditions, the inappropriate sugar nucleotide, UDPglucose, had no effect. Quantitative enzyme assays confirmed the presence of GalTase substrates in basal lamina matrices, their absence in fibronectin matrices, and the ability of alpha-LA to inhibit GalTase activity towards basal lamina substrates. Laminin was found to be a principle GalTase substrate in the basal lamina, and when tested in vitro, alpha-LA inhibited cell migration on laminin. Together, these experiments show that neural crest cells have at least two distinct mechanisms for interacting with the substrate during migration, one that is fibronectin-dependent and one that uses GalTase recognition of basal lamina glycoconjugates.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bolender D. L., Seliger W. G., Markwald R. R. A histochemical analysis of polyanoinic compounds found in the extracellular matrix encountered by migrating cephalic neural crest cells. Anat Rec. 1980;196(4):401–412. doi: 10.1002/ar.1091960405. [DOI] [PubMed] [Google Scholar]
  2. Boucaut J. C., Darribère T., Poole T. J., Aoyama H., Yamada K. M., Thiery J. P. Biologically active synthetic peptides as probes of embryonic development: a competitive peptide inhibitor of fibronectin function inhibits gastrulation in amphibian embryos and neural crest cell migration in avian embryos. J Cell Biol. 1984 Nov;99(5):1822–1830. doi: 10.1083/jcb.99.5.1822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brauer P. R., Bolender D. L., Markwald R. R. The distribution and spatial organization of the extracellular matrix encountered by mesencephalic neural crest cells. Anat Rec. 1985 Jan;211(1):57–68. doi: 10.1002/ar.1092110110. [DOI] [PubMed] [Google Scholar]
  4. Bronner-Fraser M. Alterations in neural crest migration by a monoclonal antibody that affects cell adhesion. J Cell Biol. 1985 Aug;101(2):610–617. doi: 10.1083/jcb.101.2.610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brown S. S., Malinoff H. L., Wicha M. S. Connectin: cell surface protein that binds both laminin and actin. Proc Natl Acad Sci U S A. 1983 Oct;80(19):5927–5930. doi: 10.1073/pnas.80.19.5927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davis E. M. Translocation of neural crest cells within a hydrated collagen lattice. J Embryol Exp Morphol. 1980 Feb;55:17–31. [PubMed] [Google Scholar]
  7. Dennis J. W., Waller C. A., Schirrmacher V. Identification of asparagine-linked oligosaccharides involved in tumor cell adhesion to laminin and type IV collagen. J Cell Biol. 1984 Oct;99(4 Pt 1):1416–1423. doi: 10.1083/jcb.99.4.1416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Duband J. L., Thiery J. P. Distribution of fibronectin in the early phase of avian cephalic neural crest cell migration. Dev Biol. 1982 Oct;93(2):308–323. doi: 10.1016/0012-1606(82)90120-8. [DOI] [PubMed] [Google Scholar]
  9. Fridman R., Fuks Z., Ovadia H., Vlodavsky I. Differential structural requirements for the induction of cell attachment, proliferation and differentiation by the extracellular matrix. Exp Cell Res. 1985 Mar;157(1):181–194. doi: 10.1016/0014-4827(85)90161-2. [DOI] [PubMed] [Google Scholar]
  10. Hogan B. L. High molecular weight extracellular proteins synthesized by endoderm cells derived from mouse teratocarcinoma cells and normal extraembryonic membranes. Dev Biol. 1980 May;76(2):275–285. doi: 10.1016/0012-1606(80)90379-6. [DOI] [PubMed] [Google Scholar]
  11. Howe C. C., Solter D. Identification of noncollagenous basement membrane glycopolypeptides synthesized by mouse parietal entoderm and an entodermal cell line. Dev Biol. 1980 Jun 15;77(2):480–487. doi: 10.1016/0012-1606(80)90489-3. [DOI] [PubMed] [Google Scholar]
  12. Johansson S., Kjellén L., Hök M., Timpl R. Substrate adhesion of rat hepatocytes: a comparison of laminin and fibronectin as attachment proteins. J Cell Biol. 1981 Jul;90(1):260–264. doi: 10.1083/jcb.90.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kleinman H. K., McGarvey M. L., Liotta L. A., Robey P. G., Tryggvason K., Martin G. R. Isolation and characterization of type IV procollagen, laminin, and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry. 1982 Nov 23;21(24):6188–6193. doi: 10.1021/bi00267a025. [DOI] [PubMed] [Google Scholar]
  14. Lesot H., Kühl U., Mark K. Isolation of a laminin-binding protein from muscle cell membranes. EMBO J. 1983;2(6):861–865. doi: 10.1002/j.1460-2075.1983.tb01514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lopez L. C., Bayna E. M., Litoff D., Shaper N. L., Shaper J. H., Shur B. D. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J Cell Biol. 1985 Oct;101(4):1501–1510. doi: 10.1083/jcb.101.4.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Malinoff H. L., Wicha M. S. Isolation of a cell surface receptor protein for laminin from murine fibrosarcoma cells. J Cell Biol. 1983 May;96(5):1475–1479. doi: 10.1083/jcb.96.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maxwell G. D., Sietz P. D., Rafford C. E. Synthesis an accumulation of putative neurotransmitters by cultured neural crest cells. J Neurosci. 1982 Jul;2(7):879–888. doi: 10.1523/JNEUROSCI.02-07-00879.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maxwell G. D. Substrate dependence of cell migration from explanted neural tubes in vitro. Cell Tissue Res. 1976 Sep 20;172(3):325–330. doi: 10.1007/BF00399515. [DOI] [PubMed] [Google Scholar]
  19. Morrison J. F., Ebner K. E. Studies on galactosyltransferase. Kinetic effects of -lactalbumin with N-acetylglucosamine and glucose as galactosyl group acceptors. J Biol Chem. 1971 Jun 25;246(12):3992–3998. [PubMed] [Google Scholar]
  20. Morrison J. F., Ebner K. E. Studies on galactosyltransferase. Kinetic investigations with N-acetylglucosamine as the galactosyl group acceptor. J Biol Chem. 1971 Jun 25;246(12):3977–3984. [PubMed] [Google Scholar]
  21. Newgreen D. F., Gibbins I. L., Sauter J., Wallenfels B., Wütz R. Ultrastructural and tissue-culture studies on the role of fibronectin, collagen and glycosaminoglycans in the migration of neural crest cells in the fowl embryo. Cell Tissue Res. 1982;221(3):521–549. doi: 10.1007/BF00215700. [DOI] [PubMed] [Google Scholar]
  22. Newgreen D. Spreading of explants of embryonic chick mesenchymes and epithelia on fibronectin and laminin. Cell Tissue Res. 1984;236(2):265–277. doi: 10.1007/BF00214227. [DOI] [PubMed] [Google Scholar]
  23. Pintar J. E. Distribution and synthesis of glycosaminoglycans during quail neural crest morphogenesis. Dev Biol. 1978 Dec;67(2):444–464. doi: 10.1016/0012-1606(78)90211-7. [DOI] [PubMed] [Google Scholar]
  24. Rao N. C., Barsky S. H., Terranova V. P., Liotta L. A. Isolation of a tumor cell laminin receptor. Biochem Biophys Res Commun. 1983 Mar 29;111(3):804–808. doi: 10.1016/0006-291x(83)91370-0. [DOI] [PubMed] [Google Scholar]
  25. Roseman S. The synthesis of complex carbohydrates by multiglycosyltransferase systems and their potential function in intercellular adhesion. Chem Phys Lipids. 1970 Oct;5(1):270–297. doi: 10.1016/0009-3084(70)90024-1. [DOI] [PubMed] [Google Scholar]
  26. Roth S., McGuire E. J., Roseman S. Evidence for cell-surface glycosyltransferases. Their potential role in cellular recognition. J Cell Biol. 1971 Nov;51(21):536–547. doi: 10.1083/jcb.51.2.536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rovasio R. A., Delouvee A., Yamada K. M., Timpl R., Thiery J. P. Neural crest cell migration: requirements for exogenous fibronectin and high cell density. J Cell Biol. 1983 Feb;96(2):462–473. doi: 10.1083/jcb.96.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Shur B. D. Cell surface glycosyltransferase activities during normal and mutant (T/T) mesenchyme migration. Dev Biol. 1982 May;91(1):149–162. doi: 10.1016/0012-1606(82)90018-5. [DOI] [PubMed] [Google Scholar]
  29. Shur B. D. Cell-surface glycosyltransferases in gastrulating chick embryos. I. Temporally and spatially specific patterns of four endogenous glycosyltransferase activities. Dev Biol. 1977 Jul 1;58(1):23–39. doi: 10.1016/0012-1606(77)90072-0. [DOI] [PubMed] [Google Scholar]
  30. Shur B. D. Cell-surface glycosyltransferases in gastrulating chick embryos. II. Biochemical evidence for a surface localization of endogenous glycosyltransferase activities. Dev Biol. 1977 Jul 1;58(1):40–55. doi: 10.1016/0012-1606(77)90073-2. [DOI] [PubMed] [Google Scholar]
  31. Shur B. D. Embryonal carcinoma cell adhesion: the role of surface galactosyltransferase and its 90K lactosaminoglycan substrate. Dev Biol. 1983 Oct;99(2):360–372. doi: 10.1016/0012-1606(83)90286-5. [DOI] [PubMed] [Google Scholar]
  32. Shur B. D. Evidence that galactosyltransferase is a surface receptor for poly(N)-acetyllactosamine glycoconjugates on embryonal carcinoma cells. J Biol Chem. 1982 Jun 25;257(12):6871–6878. [PubMed] [Google Scholar]
  33. Shur B. D., Hall N. G. A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida. J Cell Biol. 1982 Nov;95(2 Pt 1):574–579. doi: 10.1083/jcb.95.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shur B. D., Hall N. G. Sperm surface galactosyltransferase activities during in vitro capacitation. J Cell Biol. 1982 Nov;95(2 Pt 1):567–573. doi: 10.1083/jcb.95.2.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sugrue S. P., Hay E. D. Response of basal epithelial cell surface and Cytoskeleton to solubilized extracellular matrix molecules. J Cell Biol. 1981 Oct;91(1):45–54. doi: 10.1083/jcb.91.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Tosney K. W. The segregation and early migration of cranial neural crest cells in the avian embryo. Dev Biol. 1982 Jan;89(1):13–24. doi: 10.1016/0012-1606(82)90289-5. [DOI] [PubMed] [Google Scholar]
  37. Tucker G. C., Aoyama H., Lipinski M., Tursz T., Thiery J. P. Identical reactivity of monoclonal antibodies HNK-1 and NC-1: conservation in vertebrates on cells derived from the neural primordium and on some leukocytes. Cell Differ. 1984 Aug;14(3):223–230. doi: 10.1016/0045-6039(84)90049-6. [DOI] [PubMed] [Google Scholar]
  38. Tucker R. P., Erickson C. A. Morphology and behavior of quail neural crest cells in artificial three-dimensional extracellular matrices. Dev Biol. 1984 Aug;104(2):390–405. doi: 10.1016/0012-1606(84)90094-0. [DOI] [PubMed] [Google Scholar]
  39. Turley E. A., Roth S. Spontaneous glycosylation of glycosaminoglycan substrates by adherent fibroblasts. Cell. 1979 May;17(1):109–115. doi: 10.1016/0092-8674(79)90299-x. [DOI] [PubMed] [Google Scholar]
  40. Weston J. A. The migration and differentiation of neural crest cells. Adv Morphog. 1970;8:41–114. doi: 10.1016/b978-0-12-028608-9.50006-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES