Abstract
A DNA-binding nonhistone protein, protein BA, was previously demonstrated to co-localize with U-snRNPs within discrete nuclear domains (Bennett, F. C., and L. C. Yeoman, 1985, Exp. Cell Res., 157:379-386). To further define the association of protein BA and U- snRNPs within these discrete nuclear domains, cells were fractionated in situ and the localization of the antigens determined by double- labeled immunofluorescence. Protein BA was extracted from the nucleus with the 2.0 M NaCl soluble chromatin fraction, while U-snRNPs were only partially extracted from the 2.0 M NaCl-resistant nuclear structures. U-snRNPs were extracted from the residual nuclear material by combined DNase I/RNase A digestions. Using an indirect immunoperoxidase technique and electron microscopy, protein BA was localized to interchromatinic regions of the cell nucleus. Protein BA was noted to share a number of chemical and physical properties with a family of cytoplasmic enzymes, the glutathione S-transferases. Comparison of the published amino acid composition of protein BA and glutathione S-transferases showed marked similarities. Nonhistone protein BA isolated from saline-EDTA nuclear extracts exhibited glutathione S-transferase activity with a variety of substrates. Substrate specificity and subunit analysis by SDS polyacrylamide gel electrophoresis revealed that it was a mixture of several glutathione S- transferase isoenzymes. Protein BA isolated from rat liver chromatin was shown by immunoblotting and peptide mapping techniques to be two glutathione S-transferase isoenzymes composed of the Yb and Yb' subunits. Glutathione S-transferase Yb subunits were demonstrated to be both nuclear and cytoplasmic proteins by indirect immunolocalization on rat liver cryosections. The identification of protein BA as glutathione S-transferase suggests that this family of multifunctional enzymes may play an important role in those nuclear domains containing U-snRNPs.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bennett F. C., Rosenfeld B. I., Huang C. H., Yeoman L. C. Evidence for two conformational forms of nonhistone protein BA which differ in their affinity for DNA. Biochem Biophys Res Commun. 1982 Jan 29;104(2):649–656. doi: 10.1016/0006-291x(82)90686-6. [DOI] [PubMed] [Google Scholar]
- Bennett F. C., Yeoman L. C. Co-localization of non-histone protein BA with U-snRNPs to the same regions of the cell nucleus. Exp Cell Res. 1985 Apr;157(2):379–386. doi: 10.1016/0014-4827(85)90123-5. [DOI] [PubMed] [Google Scholar]
- Benson A. M., Talalay P., Keen J. H., Jakoby W. B. Relationship between the soluble glutathione-dependent delta 5-3-ketosteroid isomerase and the glutathione S-transferases of the liver. Proc Natl Acad Sci U S A. 1977 Jan;74(1):158–162. doi: 10.1073/pnas.74.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bhargava M. M., Ohmi N., Listowsky I., Arias I. M. Structural, catalytic, binding, and immunological properties associated with each of the two subunits of rat liver ligandin. J Biol Chem. 1980 Jan 25;255(2):718–723. [PubMed] [Google Scholar]
- Campbell J. A., Bass N. M., Kirsch R. E. Immunohistological localization of ligandin in human tissues. Cancer. 1980 Feb;45(3):503–510. doi: 10.1002/1097-0142(19800201)45:3<503::aid-cncr2820450315>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
- Cartwright I. L., Abmayr S. M., Fleischmann G., Lowenhaupt K., Elgin S. C., Keene M. A., Howard G. C. Chromatin structure and gene activity: the role of nonhistone chromosomal proteins. CRC Crit Rev Biochem. 1982;13(1):1–86. doi: 10.3109/10409238209108709. [DOI] [PubMed] [Google Scholar]
- Catino J. J., Busch H., Daskal Y., Yeoman L. C. Subcellular localization of DNA-binding protein BA by immunofluorescence and immunoelectron microscopy. J Cell Biol. 1979 Nov;83(2 Pt 1):462–467. doi: 10.1083/jcb.83.2.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Catino J. J., Yeoman L. C., Mandel M., Busch H. Characterization of DNA binding protein from rat liver chromatin which decreases during growth. Biochemistry. 1978 Mar 21;17(6):983–987. doi: 10.1021/bi00599a006. [DOI] [PubMed] [Google Scholar]
- Chasseaud L. F. The role of glutathione and glutathione S-transferases in the metabolism of chemical carcinogens and other electrophilic agents. Adv Cancer Res. 1979;29:175–274. doi: 10.1016/s0065-230x(08)60848-9. [DOI] [PubMed] [Google Scholar]
- Fakan S., Leser G., Martin T. E. Ultrastructural distribution of nuclear ribonucleoproteins as visualized by immunocytochemistry on thin sections. J Cell Biol. 1984 Jan;98(1):358–363. doi: 10.1083/jcb.98.1.358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischner G. M., Robbins J. B., Arias I. M. Cellular localization of ligandin in rat, hamster and man. Biochem Biophys Res Commun. 1977 Feb 7;74(3):992–1000. doi: 10.1016/0006-291x(77)91616-3. [DOI] [PubMed] [Google Scholar]
- Frey A. B., Friedberg T., Oesch F., Kreibich G. Studies on the subunit composition of rat liver glutathione S-transferases. J Biol Chem. 1983 Sep 25;258(18):11321–11325. [PubMed] [Google Scholar]
- Fullmer C. S., Wasserman R. H. Analytical peptide mapping by high performance liquid chromatography. Application to intestinal calcium-binding proteins. J Biol Chem. 1979 Aug 10;254(15):7208–7212. [PubMed] [Google Scholar]
- Gracy R. W. Two-dimensional thin-layer methods. Methods Enzymol. 1977;47:195–204. doi: 10.1016/0076-6879(77)47024-1. [DOI] [PubMed] [Google Scholar]
- HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
- Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. doi: 10.1016/s0076-6879(81)77053-8. [DOI] [PubMed] [Google Scholar]
- Habig W. H., Pabst M. J., Jakoby W. B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974 Nov 25;249(22):7130–7139. [PubMed] [Google Scholar]
- Hesse S., Jernström B., Martinez M., Moldéus P., Christodoulides L., Ketterer B. Inactivation of DNA-binding metabolites of benzo[a]pyrene and benzo[a]pyrene-7,8-dihydrodiol by glutathione and glutathione S-transferases. Carcinogenesis. 1982;3(7):757–761. doi: 10.1093/carcin/3.7.757. [DOI] [PubMed] [Google Scholar]
- Jakoby W. B., Ketterer B., Mannervik B. Glutathione transferases: nomenclature. Biochem Pharmacol. 1984 Aug 15;33(16):2539–2540. doi: 10.1016/0006-2952(84)90621-x. [DOI] [PubMed] [Google Scholar]
- Jernström B., Babson J. R., Moldéus P., Holmgren A., Reed D. J. Glutathione conjugation and DNA-binding of (+/-)-trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene and (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in isolated rat hepatocytes. Carcinogenesis. 1982;3(8):861–866. doi: 10.1093/carcin/3.8.861. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lerner E. A., Lerner M. R., Janeway C. A., Jr, Steitz J. A. Monoclonal antibodies to nucleic acid-containing cellular constituents: probes for molecular biology and autoimmune disease. Proc Natl Acad Sci U S A. 1981 May;78(5):2737–2741. doi: 10.1073/pnas.78.5.2737. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lischwe M. A., Ochs D. A new method for partial peptide mapping using N-chlorosuccinimide/urea and peptide silver staining in sodium dodecyl sulfate-polyacrylamide gels. Anal Biochem. 1982 Dec;127(2):453–457. doi: 10.1016/0003-2697(82)90203-2. [DOI] [PubMed] [Google Scholar]
- Litwack G., Ketterer B., Arias I. M. Ligandin: a hepatic protein which binds steroids, bilirubin, carcinogens and a number of exogenous organic anions. Nature. 1971 Dec 24;234(5330):466–467. doi: 10.1038/234466a0. [DOI] [PubMed] [Google Scholar]
- Marquardt H., Todaro G. J., Henderson L. E., Oroszlan S. Purification and primary structure of a polypeptide with multiplication-stimulating activity from rat liver cell cultures. Homology with human insulin-like growth factor II. J Biol Chem. 1981 Jul 10;256(13):6859–6865. [PubMed] [Google Scholar]
- Miller T. E., Huang C. Y., Pogo A. O. Rat liver nuclear skeleton and small molecular weight RNA species. J Cell Biol. 1978 Mar;76(3):692–704. doi: 10.1083/jcb.76.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ochs R., Lischwe M., O'Leary P., Busch H. Localization of nucleolar phosphoproteins B23 and C23 during mitosis. Exp Cell Res. 1983 Jun;146(1):139–149. doi: 10.1016/0014-4827(83)90332-4. [DOI] [PubMed] [Google Scholar]
- Padgett R. A., Mount S. M., Steitz J. A., Sharp P. A. Splicing of messenger RNA precursors is inhibited by antisera to small nuclear ribonucleoprotein. Cell. 1983 Nov;35(1):101–107. doi: 10.1016/0092-8674(83)90212-x. [DOI] [PubMed] [Google Scholar]
- Pearson W. R., Windle J. J., Morrow J. F., Benson A. M., Talalay P. Increased synthesis of glutathione S-transferases in response to anticarcinogenic antioxidants. Cloning and measurement of messenger RNA. J Biol Chem. 1983 Feb 10;258(3):2052–2062. [PubMed] [Google Scholar]
- Prohaska J. R., Ganther H. E. Glutathione peroxidase activity of glutathione-s-transferases purified from rat liver. Biochem Biophys Res Commun. 1976 May 23;76(2):437–445. doi: 10.1016/0006-291x(77)90744-6. [DOI] [PubMed] [Google Scholar]
- Reddy R., Busch H. Small nuclear RNAs and RNA processing. Prog Nucleic Acid Res Mol Biol. 1983;30:127–162. doi: 10.1016/s0079-6603(08)60685-6. [DOI] [PubMed] [Google Scholar]
- Redick J. A., Jakoby W. B., Baron J. Immunohistochemical localization of glutathione S-transferases in livers of untreated rats. J Biol Chem. 1982 Dec 25;257(24):15200–15203. [PubMed] [Google Scholar]
- Scheer U., Hinssen H., Franke W. W., Jockusch B. M. Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell. 1984 Nov;39(1):111–122. doi: 10.1016/0092-8674(84)90196-x. [DOI] [PubMed] [Google Scholar]
- Shechter Y., Patchornik A., Burstein Y. Selective chemical cleavage of tryptophanyl peptide bonds by oxidative chlorination with N-chlorosuccinimide. Biochemistry. 1976 Nov 16;15(23):5071–5075. doi: 10.1021/bi00668a019. [DOI] [PubMed] [Google Scholar]
- Simons P. C., Vander Jagt D. L. Purification of glutathione S-transferases from human liver by glutathione-affinity chromatography. Anal Biochem. 1977 Oct;82(2):334–341. doi: 10.1016/0003-2697(77)90169-5. [DOI] [PubMed] [Google Scholar]
- Staufenbiel M., Deppert W. Preparation of nuclear matrices from cultured cells: subfractionation of nuclei in situ. J Cell Biol. 1984 May;98(5):1886–1894. doi: 10.1083/jcb.98.5.1886. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tipping E., Ketterer B. The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes. Biochem J. 1981 May 1;195(2):441–452. doi: 10.1042/bj1950441. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tu C. P., Lai H. C., Li N. Q., Weiss M. J., Reddy C. C. The Yc and Ya subunits of rat liver glutathione S-transferases are the products of separate genes. J Biol Chem. 1984 Aug 10;259(15):9434–9439. [PubMed] [Google Scholar]
- Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]
- Yeoman L. C., Taylor C. W., Jordan J. J., Busch H. Differences in chromatin proteins of growing and non-growing tissues. Exp Cell Res. 1975 Mar 1;91(1):207–215. doi: 10.1016/0014-4827(75)90159-7. [DOI] [PubMed] [Google Scholar]
- Yeoman L. C., Taylor C. W., Jordan J. J., Busch H. Two-dimensional polyacrylamide gel electrophoresis of chromatin proteins of normal rat liver and Novikoff hepatoma ascites cells. Biochem Biophys Res Commun. 1973 Aug 21;53(4):1067–1076. doi: 10.1016/0006-291x(73)90573-1. [DOI] [PubMed] [Google Scholar]
- Yeoman L. C., Taylor C. W., Woolf L. M., Busch H. Two-dimensional polyacrylamide gel analysis on nuclear proteins from human tumor cell lines. Cancer. 1978 Aug;42(2):474–482. doi: 10.1002/1097-0142(197808)42:2<474::aid-cncr2820420215>3.0.co;2-f. [DOI] [PubMed] [Google Scholar]
- Zieve G., Penman S. Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell. 1976 May;8(1):19–31. doi: 10.1016/0092-8674(76)90181-1. [DOI] [PubMed] [Google Scholar]