Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Feb 1;102(2):587–599. doi: 10.1083/jcb.102.2.587

A unique heparan sulfate in the nuclei of hepatocytes: structural changes with the growth state of the cells

PMCID: PMC2114098  PMID: 2935544

Abstract

Growing and confluent cultures of a rat hepatocyte cell line were labeled with 35SO4(2-) and the heparan sulfate in the culture medium, the pericellular matrix, the nucleus, the nuclear outer membrane, and the remaining cytoplasmic pool was purified by DEAE-cellulose chromatography. The heparan sulfate in all pools from the confluent cells was bound more strongly on the DEAE-cellulose column than the corresponding pools from the growing cells. Gel filtration of each pool before and after beta-elimination showed that the heparan sulfate from the nuclear and nuclear membrane pools was composed of primarily free chains, whereas the heparan sulfate in all of the other pools was a mixture of proteoglycans and free chains. The heparan sulfate in each pool was cleaved with nitrous acid to obtain mixtures of di- and tetrasaccharides. Analysis of these mixtures showed that the structural features of the heparan sulfates in each pool were different and were altered significantly when the growing cells became confluent. The nuclear-plus-nuclear membrane pools represented 6.5% and 5.4% of the total cell-associated heparan sulfate in the growing cells and the confluent cells, respectively. The structural features of the heparan sulfate in the two nuclear pools were very similar to each other, but were markedly different from those of the heparan sulfate from the other pools or from any previously described heparan sulfate or heparin. The most unusual aspect of these structures was the high content of beta-D-glucuronosyl(2-SO4)----D-glucosamine-N,O-(SO4)2 disaccharide units in these sequences. The mode of biosynthesis and delivery of these unusual sequences to the nucleus and the potential significance of these observations are discussed.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold E. A., Yawn D. H., Brown D. G., Wyllie R. C., Coffey D. S. Structural alteration in isolated rat liver nuclei after removal of template restriction by polyanions. J Cell Biol. 1972 Jun;53(3):737–757. doi: 10.1083/jcb.53.3.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bhavanandan V. P., Davidson E. A. Mucopolysaccharides associated with nuclei of cultured mammalian cells. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2032–2036. doi: 10.1073/pnas.72.6.2032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bienkowski M. J., Conrad H. E. Kinetics of proteoheparan sulfate synthesis, secretion, endocytosis, and catabolism by a hepatocyte cell line. J Biol Chem. 1984 Nov 10;259(21):12989–12996. [PubMed] [Google Scholar]
  4. Bienkowski M. J., Conrad H. E. Structural characterization of the oligosaccharides formed by depolymerization of heparin with nitrous acid. J Biol Chem. 1985 Jan 10;260(1):356–365. [PubMed] [Google Scholar]
  5. Blobel G., Potter V. R. Nuclei from rat liver: isolation method that combines purity with high yield. Science. 1966 Dec 30;154(3757):1662–1665. doi: 10.1126/science.154.3757.1662. [DOI] [PubMed] [Google Scholar]
  6. Bornens M. Letter: Action of heparin on nuclei: solubilization of chromatin enabling the isolation of nuclear membranes. Nature. 1973 Jul 6;244(5410):28–30. doi: 10.1038/244028a0. [DOI] [PubMed] [Google Scholar]
  7. Castellot J. J., Jr, Addonizio M. L., Rosenberg R., Karnovsky M. J. Cultured endothelial cells produce a heparinlike inhibitor of smooth muscle cell growth. J Cell Biol. 1981 Aug;90(2):372–379. doi: 10.1083/jcb.90.2.372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Castellot J. J., Jr, Beeler D. L., Rosenberg R. D., Karnovsky M. J. Structural determinants of the capacity of heparin to inhibit the proliferation of vascular smooth muscle cells. J Cell Physiol. 1984 Sep;120(3):315–320. doi: 10.1002/jcp.1041200309. [DOI] [PubMed] [Google Scholar]
  9. Cheng C. F., Oosta G. M., Bensadoun A., Rosenberg R. D. Binding of lipoprotein lipase to endothelial cells in culture. J Biol Chem. 1981 Dec 25;256(24):12893–12898. [PubMed] [Google Scholar]
  10. Chrisman T. D., Jordan J. E., Exton J. H. Rat liver phosphorylase kinase. Stimulation by heparin. J Biol Chem. 1981 Dec 25;256(24):12981–12985. [PubMed] [Google Scholar]
  11. Cifonelli J. A., King J. A. Structural characteristics of heparan sulfates with varying sulfate contents. Biochemistry. 1977 May 17;16(10):2137–2141. doi: 10.1021/bi00629a014. [DOI] [PubMed] [Google Scholar]
  12. Clancy R. M., McPherson L. H., Glaser M. Effect of changes in the phospholipid composition on the enzymatic activity of D-beta-hydroxybutyrate dehydrogenase in rat hepatocytes. Biochemistry. 1983 May 10;22(10):2358–2364. doi: 10.1021/bi00279a009. [DOI] [PubMed] [Google Scholar]
  13. Cole G. J., Schubert D., Glaser L. Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol. 1985 Apr;100(4):1192–1199. doi: 10.1083/jcb.100.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cássaro C. M., Dietrich C. P. Distribution of sulfated mucopolysaccharides in invertebrates. J Biol Chem. 1977 Apr 10;252(7):2254–2261. [PubMed] [Google Scholar]
  15. Delaney S. R., Leger M., Conrad H. E. Quantitation of the sulfated disaccharides of heparin by high performance liquid chromatography. Anal Biochem. 1980 Jul 15;106(1):253–261. doi: 10.1016/0003-2697(80)90145-1. [DOI] [PubMed] [Google Scholar]
  16. Dynan W. S., Burgess R. R. In vitro transcription by wheat germ ribonucleic acid polymerase II: effects of heparin and role of template integrity. Biochemistry. 1979 Oct 16;18(21):4581–4588. doi: 10.1021/bi00588a019. [DOI] [PubMed] [Google Scholar]
  17. Fritze L. M., Reilly C. F., Rosenberg R. D. An antiproliferative heparan sulfate species produced by postconfluent smooth muscle cells. J Cell Biol. 1985 Apr;100(4):1041–1049. doi: 10.1083/jcb.100.4.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Fromme H. G., Buddecke E., von Figura K., Kresse H. Localization of sulfated glycosaminoglycans within cell nuclei by high-resolution autoradiography. Exp Cell Res. 1976 Oct 15;102(2):445–449. doi: 10.1016/0014-4827(76)90068-9. [DOI] [PubMed] [Google Scholar]
  19. Furukawa K., Bhavanandan V. P. Influences of anionic polysaccharides on DNA synthesis in isolated nuclei and by DNA polymerase alpha: correlation of observed effects with properties of the polysaccharides. Biochim Biophys Acta. 1983 Sep 9;740(4):466–475. doi: 10.1016/0167-4781(83)90096-9. [DOI] [PubMed] [Google Scholar]
  20. Furukawa K., Terayama H. Isolation and identification of glycosaminoglycans associated with purified nuclei from rat liver. Biochim Biophys Acta. 1977 Sep 29;499(2):278–289. doi: 10.1016/0304-4165(77)90010-1. [DOI] [PubMed] [Google Scholar]
  21. Furukawa K., Terayama H. Pattern of glycosaminoglycans and glycoproteins associated with nuclei of regenerating liver of rat. Biochim Biophys Acta. 1979 Jul 18;585(4):575–588. doi: 10.1016/0304-4165(79)90190-9. [DOI] [PubMed] [Google Scholar]
  22. Gallagher J. T., Spooncer E., Dexter T. M. Role of the cellular matrix in haemopoiesis. I. Synthesis of glycosaminoglycans by mouse bone marrow cell cultures. J Cell Sci. 1983 Sep;63:155–171. doi: 10.1242/jcs.63.1.155. [DOI] [PubMed] [Google Scholar]
  23. Gamse G., Fromme H. G., Kresse H. Metabolism of sulfated glycosaminoglycans in cultured endothelial cells and smooth muscle cells from bovine aorta. Biochim Biophys Acta. 1978 Dec 18;544(3):514–528. doi: 10.1016/0304-4165(78)90326-4. [DOI] [PubMed] [Google Scholar]
  24. Gerschenson L. E., Andersson M., Molson J., Okigaki T. Tyrosine transaminase induction by dexamethasone in a new rat liver cell line. Science. 1970 Nov 20;170(3960):859–861. doi: 10.1126/science.170.3960.859. [DOI] [PubMed] [Google Scholar]
  25. Gomes P. B., Dietrich C. P. Distribution of heparin and other sulfated glycosaminoglycans in vertebrates. Comp Biochem Physiol B. 1982;73(4):857–863. doi: 10.1016/0305-0491(82)90329-7. [DOI] [PubMed] [Google Scholar]
  26. Guyton J. R., Rosenberg R. D., Clowes A. W., Karnovsky M. J. Inhibition of rat arterial smooth muscle cell proliferation by heparin. In vivo studies with anticoagulant and nonanticoagulant heparin. Circ Res. 1980 May;46(5):625–634. doi: 10.1161/01.res.46.5.625. [DOI] [PubMed] [Google Scholar]
  27. Hara T., Takahashi K., Endo H. Reversal of heparin inhibition of nuclear protein kinase NII by polyamines and histones. FEBS Lett. 1981 Jun 1;128(1):33–36. doi: 10.1016/0014-5793(81)81072-1. [DOI] [PubMed] [Google Scholar]
  28. Hathaway G. M., Lubben T. H., Traugh J. A. Inhibition of casein kinase II by heparin. J Biol Chem. 1980 Sep 10;255(17):8038–8041. [PubMed] [Google Scholar]
  29. Higuchi K. An improved chemically defined culture medium for strain L mouse cells based on growth responses to graded levels of nutrients including iron and zinc ions. J Cell Physiol. 1970 Feb;75(1):65–72. doi: 10.1002/jcp.1040750108. [DOI] [PubMed] [Google Scholar]
  30. Hoover R. L., Rosenberg R., Haering W., Karnovsky M. J. Inhibition of rat arterial smooth muscle cell proliferation by heparin. II. In vitro studies. Circ Res. 1980 Oct;47(4):578–583. doi: 10.1161/01.res.47.4.578. [DOI] [PubMed] [Google Scholar]
  31. Hök M., Wasteson A., Oldberg A. A heparan sulfate-degrading endoglycosidase from rat liver tissue. Biochem Biophys Res Commun. 1975 Dec 15;67(4):1422–1428. doi: 10.1016/0006-291x(75)90185-0. [DOI] [PubMed] [Google Scholar]
  32. Ishii K., Katase A., Andoh T., Seno N. Inhibition of topoisomerase I by heparin. Biochem Biophys Res Commun. 1982 Jan 29;104(2):541–547. doi: 10.1016/0006-291x(82)90671-4. [DOI] [PubMed] [Google Scholar]
  33. Kanwar Y. S., Farquhar M. G. Presence of heparan sulfate in the glomerular basement membrane. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1303–1307. doi: 10.1073/pnas.76.3.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kim J. J., Conrad H. E. Effect of D-glucosamine concentration on the kinetics of mucopolysaccharide biosynthesis in cultured chick embryo vertebral cartilage. J Biol Chem. 1974 May 25;249(10):3091–3097. [PubMed] [Google Scholar]
  35. Kim J. J., Conrad H. E. Properties of cultured chondrocytes obtained from histologically distinct zones of the chick embryo tibiotarsus. J Biol Chem. 1977 Nov 25;252(22):8292–8299. [PubMed] [Google Scholar]
  36. Kim J. J., Conrad H. E. Secretion of chondroitin SO4 by monolayer cultures of chick embryo chondrocytes. J Biol Chem. 1980 Feb 25;255(4):1586–1597. [PubMed] [Google Scholar]
  37. Kirsch W. M., Leitner J. W., Gainey M., Schulz D., Lasher R., Nakane P. Bulk isolation in nonaqueous media of nuclei from lyophilized cells. Science. 1970 Jun 26;168(3939):1592–1595. doi: 10.1126/science.168.3939.1592. [DOI] [PubMed] [Google Scholar]
  38. Klein U., Von Figura K. Partial purification and characterization of heparan sulfate specific endoglucuronidase. Biochem Biophys Res Commun. 1976 Dec 6;73(3):569–576. doi: 10.1016/0006-291x(76)90848-2. [DOI] [PubMed] [Google Scholar]
  39. Kraemer R. J., Coffey D. S. The interaction of natural and synthetic polyanions with mammalian nucleo. I. DNA synthesis. Biochim Biophys Acta. 1970 Dec 14;224(2):553–567. [PubMed] [Google Scholar]
  40. Laterra J., Silbert J. E., Culp L. A. Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J Cell Biol. 1983 Jan;96(1):112–123. doi: 10.1083/jcb.96.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Linker A., Hovingh P. Structural studies of heparitin sulfates. Biochim Biophys Acta. 1975 Apr 7;385(2):324–333. doi: 10.1016/0304-4165(75)90360-8. [DOI] [PubMed] [Google Scholar]
  42. Maciag T., Mehlman T., Friesel R., Schreiber A. B. Heparin binds endothelial cell growth factor, the principal endothelial cell mitogen in bovine brain. Science. 1984 Aug 31;225(4665):932–935. doi: 10.1126/science.6382607. [DOI] [PubMed] [Google Scholar]
  43. Majack R. A., Bornstein P. Heparin and related glycosaminoglycans modulate the secretory phenotype of vascular smooth muscle cells. J Cell Biol. 1984 Nov;99(5):1688–1695. doi: 10.1083/jcb.99.5.1688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Majack R. A., Bornstein P. Heparin regulates the collagen phenotype of vascular smooth muscle cells: induced synthesis of an Mr 60,000 collagen. J Cell Biol. 1985 Feb;100(2):613–619. doi: 10.1083/jcb.100.2.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Majack R. A., Clowes A. W. Inhibition of vascular smooth muscle cell migration by heparin-like glycosaminoglycans. J Cell Physiol. 1984 Mar;118(3):253–256. doi: 10.1002/jcp.1041180306. [DOI] [PubMed] [Google Scholar]
  46. Marcum J. A., Fritze L., Galli S. J., Karp G., Rosenberg R. D. Microvascular heparin-like species with anticoagulant activity. Am J Physiol. 1983 Nov;245(5 Pt 1):H725–H733. doi: 10.1152/ajpheart.1983.245.5.H725. [DOI] [PubMed] [Google Scholar]
  47. Marcum J. A., McKenney J. B., Rosenberg R. D. Acceleration of thrombin-antithrombin complex formation in rat hindquarters via heparinlike molecules bound to the endothelium. J Clin Invest. 1984 Aug;74(2):341–350. doi: 10.1172/JCI111429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Marcum J. A., Rosenberg R. D. Anticoagulantly active heparin-like molecules from vascular tissue. Biochemistry. 1984 Apr 10;23(8):1730–1737. doi: 10.1021/bi00303a023. [DOI] [PubMed] [Google Scholar]
  49. Margolis R. K., Crockett C. P., Kiang W. L., Margolis R. U. Glycosaminoglycans and glycoproteins associated with rat brain nuclei. Biochim Biophys Acta. 1976 Dec 21;451(2):465–469. doi: 10.1016/0304-4165(76)90141-0. [DOI] [PubMed] [Google Scholar]
  50. Mitchell N., Shepard N. The sulphur content of chondrocyte nuclei. Histochemistry. 1984;80(1):73–78. doi: 10.1007/BF00492774. [DOI] [PubMed] [Google Scholar]
  51. Nakajima M., Irimura T., Di Ferrante N., Nicolson G. L. Metastatic melanoma cell heparanase. Characterization of heparan sulfate degradation fragments produced by B16 melanoma endoglucuronidase. J Biol Chem. 1984 Feb 25;259(4):2283–2290. [PubMed] [Google Scholar]
  52. Ogren S., Lindahl U. Metabolism of macromolecular heparin in mouse neoplastic mast cells. Biochem J. 1976 Mar 15;154(3):605–611. doi: 10.1042/bj1540605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Oldberg A., Kjellén L., Hök M. Cell-surface heparan sulfate. Isolation and characterization of a proteoglycan from rat liver membranes. J Biol Chem. 1979 Sep 10;254(17):8505–8510. [PubMed] [Google Scholar]
  54. Oosta G. M., Favreau L. V., Beeler D. L., Rosenberg R. D. Purification and properties of human platelet heparitinase. J Biol Chem. 1982 Oct 10;257(19):11249–11255. [PubMed] [Google Scholar]
  55. Paine P. L., Austerberry C. F., Desjarlais L. J., Horowitz S. B. Protein loss during nuclear isolation. J Cell Biol. 1983 Oct;97(4):1240–1242. doi: 10.1083/jcb.97.4.1240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Prinz R., Klein U., Sudhakaran P. R., Sinn W., Ullrich K., von Figura K. Metabolism of sulfated glycosaminoglycans in rat hepatocytes. Synthesis of heparan sulfate and distribution into cellular and extracellular pools. Biochim Biophys Acta. 1980 Jul 3;630(3):402–413. doi: 10.1016/0304-4165(80)90289-5. [DOI] [PubMed] [Google Scholar]
  57. Riesenfeld J., Hözok M., Lindahl U. Biosynthesis of heparan sulfate in rat liver. Characterization of polysaccharides obtained with intact cells and with a cell-free system. J Biol Chem. 1982 Jun 25;257(12):7050–7055. [PubMed] [Google Scholar]
  58. Robinson H. C., Horner A. A., Hök M., Ogren S., Lindahl U. A proteoglycan form of heparin and its degradation to single-chain molecules. J Biol Chem. 1978 Oct 10;253(19):6687–6693. [PubMed] [Google Scholar]
  59. Robinson J., Viti M., Hök M. Structure and properties of an under-sulfated heparan sulfate proteoglycan synthesized by a rat hepatoma cell line. J Cell Biol. 1984 Mar;98(3):946–953. doi: 10.1083/jcb.98.3.946. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Saba H. I., Saba S. R., Blackburn C. A., Hartmann R. C., Mason R. G. Heparin neutralization of PGI2: effects upon platelets. Science. 1979 Aug 3;205(4405):499–501. doi: 10.1126/science.377493. [DOI] [PubMed] [Google Scholar]
  61. Shaklee P. N., Glaser J. H., Conrad H. E. A sulfatase specific for glucuronic acid 2-sulfate residues in glycosaminoglycans. J Biol Chem. 1985 Aug 5;260(16):9146–9149. [PubMed] [Google Scholar]
  62. Shively J. E., Conrad H. E. Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry. 1976 Sep 7;15(18):3932–3942. doi: 10.1021/bi00663a005. [DOI] [PubMed] [Google Scholar]
  63. Sjöberg I., Fransson L. A. Structural studies on heparan sulphate from human lung fibroblasts. Characterization of oligosaccharides obtained by selective periodate oxidation of D-glucuronic acid residues followed by scission in alkali. Biochem J. 1980 Oct 1;191(1):103–110. doi: 10.1042/bj1910103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Stein G. S., Roberts R. M., Davis J. L., Head W. J., Stein J. L., Thrall C. L., Van Veen J., Welch D. W. Are glycoproteins and glycosaminoglycans components of the eukaryotic genome? Nature. 1975 Dec 18;258(5536):639–641. doi: 10.1038/258639a0. [DOI] [PubMed] [Google Scholar]
  65. Stow J. L., Kjéllen L., Unger E., Hök M., Farquhar M. G. Heparan sulfate proteoglycans are concentrated on the sinusoidal plasmalemmal domain and in intracellular organelles of hepatocytes. J Cell Biol. 1985 Mar;100(3):975–980. doi: 10.1083/jcb.100.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Thornton S. C., Mueller S. N., Levine E. M. Human endothelial cells: use of heparin in cloning and long-term serial cultivation. Science. 1983 Nov 11;222(4624):623–625. doi: 10.1126/science.6635659. [DOI] [PubMed] [Google Scholar]
  67. Yanagishita M., Hascall V. C. Metabolism of proteoglycans in rat ovarian granulosa cell culture. Multiple intracellular degradative pathways and the effect of chloroquine. J Biol Chem. 1984 Aug 25;259(16):10270–10283. [PubMed] [Google Scholar]
  68. Young E., Horner A. A. The assay and partial characterization of macromolecular heparin depolymerase activity in rat small intestine. Biochem J. 1979 Jun 15;180(3):587–596. doi: 10.1042/bj1800587. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES