Abstract
Teleost retinal cones elongate in the dark and contract in the light. In isolated retinas of the green sunfish Lepomis cyanellus, cone myoids undergo microtubule-dependent elongation from 5 to 45 micron. We have previously shown that cone contraction can be reactivated in motile models of cones lysed with Brij-58. Reactivated contraction is both actin and ATP dependent, activated by calcium, and inhibited by cAMP. We report here that we have obtained reactivated cone elongation in lysed models prepared by the same procedures. Reactivated elongation is ATP dependent, activated by cAMP, and inhibited by calcium. The rate of reactivated elongation is proportional to the cAMP concentration between 10 microM and 0.5 mM, but is constant between 10 microM and 1.0 mM Mg-ATP. No elongation occurs if cAMP or Mg-ATP concentration is less than or equal to 5 microM. Mg-ATP is required for both cAMP-dependent and cAMP-independent processes, suggesting that Mg-ATP is required both for a regulatory process entailing cAMP-dependent phosphorylation and for a force-producing process. Free calcium concentrations greater than or equal to 10(-7) reduce the elongation rate by 78% or more, completely inhibiting elongation at 10(-5) M. This inhibition is not due to competition from calcium-activated contraction. Cytochalasin D blocks reactivated contraction, but does not abolish calcium inhibition of reactivated elongation. Thus calcium directly affects the elongation mechanism. Calcium inhibition is calmodulin dependent. The calmodulin inhibitor trifluoperazine abolishes calcium inhibition of elongation. Furthermore, calcium blocks elongation only if present during the lysis step; subsequent calcium addition has no effect. However, if calcium plus exogenous calmodulin are subsequently added, elongation is again inhibited. Thus calcium inhibition appears to require a soluble calmodulin which is lost shortly after lysis.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beavo J. A., Bechtel P. J., Krebs E. G. Activation of protein kinase by physiological concentrations of cyclic AMP. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3580–3583. doi: 10.1073/pnas.71.9.3580. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum J. J., Hayes A., Jamieson G. A., Jr, Vanaman T. C. Calmodulin confers calcium sensitivity on ciliary dynein ATPase. J Cell Biol. 1980 Nov;87(2 Pt 1):386–397. doi: 10.1083/jcb.87.2.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blum J. J., Hayes A., Jamieson G. A., Jr, Vanaman T. C. Interrelationships between thermal-, N-ethylmaleimide-, and Ca2+-calmodulin-mediated activation/inactivation of dynein ATPase activities. Arch Biochem Biophys. 1981 Aug;210(1):363–371. doi: 10.1016/0003-9861(81)90199-5. [DOI] [PubMed] [Google Scholar]
- Bouchard P., Penningroth S. M., Cheung A., Gagnon C., Bardin C. W. erythro-9-[3-(2-Hydroxynonyl)]adenine is an inhibitor of sperm motility that blocks dynein ATPase and protein carboxylmethylase activities. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1033–1036. doi: 10.1073/pnas.78.2.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brandt H., Hoskins D. D. A cAMP-dependent phosphorylated motility protein in bovine epididymal sperm. J Biol Chem. 1980 Feb 10;255(3):982–987. [PubMed] [Google Scholar]
- Brokaw C. J. Activation and reactivation of Ciona spermatozoa. Prog Clin Biol Res. 1982;80:185–189. doi: 10.1002/cm.970020735. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Benedict B. Mechanochemical coupling in flagella. 3. Effects of some uncoupling agents on properties of the flagellar ATPase. Arch Biochem Biophys. 1971 Jan;142(1):91–100. doi: 10.1016/0003-9861(71)90262-1. [DOI] [PubMed] [Google Scholar]
- Burnside B., Ackland N. Effects of circadian rhythm and cAMP on retinomotor movements in the green sunfish, Lepomis cyanellus. Invest Ophthalmol Vis Sci. 1984 May;25(5):539–545. [PubMed] [Google Scholar]
- Burnside B., Evans M., Fletcher R. T., Chader G. J. Induction of dark-adaptive retinomotor movement (cell elongation) in teleost retinal cones by cyclic adenosine 3','5-monophosphate. J Gen Physiol. 1982 May;79(5):759–774. doi: 10.1085/jgp.79.5.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnside B., Smith B., Nagata M., Porrello K. Reactivation of contraction in detergent-lysed teleost retinal cones. J Cell Biol. 1982 Jan;92(1):199–206. doi: 10.1083/jcb.92.1.199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
- Chafouleas J. G., Dedman J. R., Munjaal R. P., Means A. R. Calmodulin. Development and application of a sensitive radioimmunoassay. J Biol Chem. 1979 Oct 25;254(20):10262–10267. [PubMed] [Google Scholar]
- Dabrowska R., Sherry J. M., Aromatorio D. K., Hartshorne D. J. Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry. 1978 Jan 24;17(2):253–258. doi: 10.1021/bi00595a010. [DOI] [PubMed] [Google Scholar]
- Dearry A., Burnside B. Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas. J Gen Physiol. 1984 Apr;83(4):589–611. doi: 10.1085/jgp.83.4.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Flockhart D. A., Corbin J. D. Regulatory mechanisms in the control of protein kinases. CRC Crit Rev Biochem. 1982 Feb;12(2):133–186. doi: 10.3109/10409238209108705. [DOI] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Calcium-induced quiescence in reactivated sea urchin sperm. J Cell Biol. 1980 Jan;84(1):13–27. doi: 10.1083/jcb.84.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with triton X-100. J Cell Biol. 1972 Jul;54(1):75–97. doi: 10.1083/jcb.54.1.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Properties of flagellar "rigor waves" formed by abrupt removal of adenosine triphosphate from actively swimming sea urchin sperm. J Cell Biol. 1974 Dec;63(3):970–985. doi: 10.1083/jcb.63.3.970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R., Fronk E. Some properties of bound and soluble dynein from sea urchin sperm flagella. J Cell Biol. 1972 Aug;54(2):365–381. doi: 10.1083/jcb.54.2.365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R. Studies on the adenosine triphosphatase activity of 14 S and 30 S dynein from cilia of Tetrahymena. J Biol Chem. 1966 Dec 10;241(23):5590–5596. [PubMed] [Google Scholar]
- Goldenring J. R., Gonzalez B., McGuire J. S., Jr, DeLorenzo R. J. Purification and characterization of a calmodulin-dependent kinase from rat brain cytosol able to phosphorylate tubulin and microtubule-associated proteins. J Biol Chem. 1983 Oct 25;258(20):12632–12640. [PubMed] [Google Scholar]
- Grab D. J., Carlin R. K., Siekevitz P. Function of calmodulin in postsynaptic densities. I. Presence of a calmodulin-activatable cyclic nucleotide phosphodiesterase activity. J Cell Biol. 1981 Jun;89(3):433–439. doi: 10.1083/jcb.89.3.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hata H., Yano Y., Miki-Noumura T. ATP concentration dependency of the tubule-extrusion velocity from the axonemes. Exp Cell Res. 1979 Sep;122(2):416–419. doi: 10.1016/0014-4827(79)90322-7. [DOI] [PubMed] [Google Scholar]
- Hyams J. S., Borisy G. G. Isolated flagellar apparatus of Chlamydomonas: characterization of forward swimming and alteration of waveform and reversal of motion by calcium ions in vitro. J Cell Sci. 1978 Oct;33:235–253. doi: 10.1242/jcs.33.1.235. [DOI] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Ishiguro K., Murofushi H., Sakai H. Evidence that cAMP-dependent protein kinase and a protein factor are involved in reactivation of triton X-100 models of sea urchin and starfish spermatozoa. J Cell Biol. 1982 Mar;92(3):777–782. doi: 10.1083/jcb.92.3.777. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keith C., DiPaola M., Maxfield F. R., Shelanski M. L. Microinjection of Ca++-calmodulin causes a localized depolymerization of microtubules. J Cell Biol. 1983 Dec;97(6):1918–1924. doi: 10.1083/jcb.97.6.1918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kennedy M. B., Greengard P. Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate protein I at distinct sites. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1293–1297. doi: 10.1073/pnas.78.2.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kiehart D. P. Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system. J Cell Biol. 1981 Mar;88(3):604–617. doi: 10.1083/jcb.88.3.604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klee C. B., Crouch T. H., Krinks M. H. Subunit structure and catalytic properties of bovine brain Ca2+-dependent cyclic nucleotide phosphodiesterase. Biochemistry. 1979 Feb 20;18(4):722–729. doi: 10.1021/bi00571a026. [DOI] [PubMed] [Google Scholar]
- Kobayashi T., Martensen T., Nath J., Flavin M. Inhibition of dynein ATPase by vanadate, and its possible use as a probe for the role of dynein in cytoplasmic motility. Biochem Biophys Res Commun. 1978 Apr 28;81(4):1313–1318. doi: 10.1016/0006-291x(78)91279-2. [DOI] [PubMed] [Google Scholar]
- Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
- Kuo J. F., Krueger B. K., Sanes J. R., Greengard P. Cyclic nucleotide-dependent protein kinases. V. Preparation and properties of adenosine 3',5'-monophosphate-dependent protein kinase from various bovine tissues. Biochim Biophys Acta. 1970 Jul 15;212(1):79–91. doi: 10.1016/0005-2744(70)90180-4. [DOI] [PubMed] [Google Scholar]
- Lee Y. C., Wolff J. Calmodulin binds to both microtubule-associated protein 2 and tau proteins. J Biol Chem. 1984 Jan 25;259(2):1226–1230. [PubMed] [Google Scholar]
- Levin R. M., Weiss B. Specificity of the binding of trifluoperazine to the calcium-dependent activator of phosphodiesterase and to a series of other calcium-binding proteins. Biochim Biophys Acta. 1978 May 3;540(2):197–204. doi: 10.1016/0304-4165(78)90132-0. [DOI] [PubMed] [Google Scholar]
- Levinson G., Burnside B. Circadian rhythms in teleost retinomotor movement. A comparison of the effects of circadian rhythm and light condition on cone length. Invest Ophthalmol Vis Sci. 1981 Mar;20(3):294–303. [PubMed] [Google Scholar]
- Lindemann C. B., Lipton M., Shlafer R. The interaction of cAMP with modeled bull sperm. Cell Motil. 1983;3(2):199–210. doi: 10.1002/cm.970030208. [DOI] [PubMed] [Google Scholar]
- McDonald K. Osmium ferricyanide fixation improves microfilament preservation and membrane visualization in a variety of animal cell types. J Ultrastruct Res. 1984 Feb;86(2):107–118. doi: 10.1016/s0022-5320(84)80051-9. [DOI] [PubMed] [Google Scholar]
- Miyamoto E., Kuo J. F., Greengard P. Cyclic nucleotide-dependent protein kinases. 3. Purification and properties of adenosine 3',5'-monophosphate-dependent protein kinase from bovine brain. J Biol Chem. 1969 Dec 10;244(23):6395–6402. [PubMed] [Google Scholar]
- Mohri H., Yanagimachi R. Characteristics of motor apparatus in testicular, epididymal and ejaculated spermatozoa. A study using demembranated sperm models. Exp Cell Res. 1980 May;127(1):191–196. doi: 10.1016/0014-4827(80)90426-7. [DOI] [PubMed] [Google Scholar]
- Morisawa M., Okuno M. Cyclic AMP induces maturation of trout sperm axoneme to initiate motility. Nature. 1982 Feb 25;295(5851):703–704. doi: 10.1038/295703a0. [DOI] [PubMed] [Google Scholar]
- Naito Y., Kaneko H. Control of ciliary activities by adenosinetriphosphate and divalent cations in triton-extracted models of Paramecium caudatum. J Exp Biol. 1973 Jun;58(3):657–676. doi: 10.1242/jeb.58.3.657. [DOI] [PubMed] [Google Scholar]
- Nosé P., Schulman H. Protein phosphorylation system in bovine brain cytosol dependent on calcium and calmodulin. Biochem Biophys Res Commun. 1982 Aug;107(3):1082–1090. doi: 10.1016/0006-291x(82)90632-5. [DOI] [PubMed] [Google Scholar]
- O'Callaghan J. P., Dunn L. A., Lovenberg W. Calcium-regulated phosphorylation in synaptosomal cytosol: dependence on calmodulin. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5812–5816. doi: 10.1073/pnas.77.10.5812. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porrello K., Burnside B. Regulation of reactivated contraction in teleost retinal cone models by calcium and cyclic adenosine monophosphate. J Cell Biol. 1984 Jun;98(6):2230–2238. doi: 10.1083/jcb.98.6.2230. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Porrello K., Cande W. Z., Burnside B. N-ethylmaleimide-modified subfragment-1 and heavy meromyosin inhibit reactivated contraction in motile models of retinal cones. J Cell Biol. 1983 Feb;96(2):449–454. doi: 10.1083/jcb.96.2.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rappaport L., Leterrier J. F., Virion A., Nunez J., Osty J. Phosphorylation of microtubule-associated proteins. Eur J Biochem. 1976 Mar 1;62(3):539–549. doi: 10.1111/j.1432-1033.1976.tb10188.x. [DOI] [PubMed] [Google Scholar]
- Rosen O. M., Erlichman J., Rubin C. S. Molecular structure and characterization of bovine heart protein kinase. Adv Cyclic Nucleotide Res. 1975;5:253–263. [PubMed] [Google Scholar]
- Satir P. Mechanisms and controls of microtubule sliding in cilia. Symp Soc Exp Biol. 1982;35:179–201. [PubMed] [Google Scholar]
- Satir P., Wais-Steider J., Lebduska S., Nasr A., Avolio J. The mechanochemical cycle of the dynein arm. Cell Motil. 1981;1(3):303–327. doi: 10.1002/cm.970010304. [DOI] [PubMed] [Google Scholar]
- Schulman H., Greengard P. Ca2+-dependent protein phosphorylation system in membranes from various tissues, and its activation by "calcium-dependent regulator". Proc Natl Acad Sci U S A. 1978 Nov;75(11):5432–5436. doi: 10.1073/pnas.75.11.5432. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheterline P. Phosphorylation of pig brain microtubule proteins. General properties and partial characterization of endogenous substrate and cyclic AMP-dependent protein kinase. Biochem J. 1977 Dec 15;168(3):533–539. doi: 10.1042/bj1680533. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sloboda R. D., Rudolph S. A., Rosenbaum J. L., Greengard P. Cyclic AMP-dependent endogenous phosphorylation of a microtubule-associated protein. Proc Natl Acad Sci U S A. 1975 Jan;72(1):177–181. doi: 10.1073/pnas.72.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snyder J. A., McIntosh J. R. Initiation and growth of microtubules from mitotic centers in lysed mammalian cells. J Cell Biol. 1975 Dec;67(3):744–760. doi: 10.1083/jcb.67.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinhardt R., Zucker R., Schatten G. Intracellular calcium release at fertilization in the sea urchin egg. Dev Biol. 1977 Jul 1;58(1):185–196. doi: 10.1016/0012-1606(77)90084-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Summers K. E., Gibbons I. R. Adenosine triphosphate-induced sliding of tubules in trypsin-treated flagella of sea-urchin sperm. Proc Natl Acad Sci U S A. 1971 Dec;68(12):3092–3096. doi: 10.1073/pnas.68.12.3092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi M., Tonomura Y. Binding of 30s dynein with the B-tubule of the outer doublet of axonemes from Tetrahymena pyriformis and adenosine triphosphate-induced dissociation of the complex. J Biochem. 1978 Dec;84(6):1339–1355. doi: 10.1093/oxfordjournals.jbchem.a132256. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Kakar S. S., Means A. R. Flagellar motility requires the cAMP-dependent phosphorylation of a heat-stable NP-40-soluble 56 kd protein, axokinin. Cell. 1984 Sep;38(2):551–559. doi: 10.1016/0092-8674(84)90509-9. [DOI] [PubMed] [Google Scholar]
- Tash J. S., Means A. R. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium. Biol Reprod. 1982 May;26(4):745–763. doi: 10.1095/biolreprod26.4.745. [DOI] [PubMed] [Google Scholar]
- Terashita S., Kato T., Sato H. Reaction mechanism of 21S dynein ATPase from sea urchin sperm. I. Kinetic properties in the steady state. J Biochem. 1983 Jun;93(6):1567–1574. doi: 10.1093/oxfordjournals.jbchem.a134295. [DOI] [PubMed] [Google Scholar]
- Vallee R. Structure and phosphorylation of microtubule-associated protein 2 (MAP 2). Proc Natl Acad Sci U S A. 1980 Jun;77(6):3206–3210. doi: 10.1073/pnas.77.6.3206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Walter M. F., Satir P. Calcium control of ciliary arrest in mussel gill cells. J Cell Biol. 1978 Oct;79(1):110–120. doi: 10.1083/jcb.79.1.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Warren R. H., Brunside B. Microtubules in cone myoid elongation in the teleost retina. J Cell Biol. 1978 Jul;78(1):247–259. doi: 10.1083/jcb.78.1.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yamamoto H., Fukunaga K., Tanaka E., Miyamoto E. Ca2+- and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and tau factor, and inhibition of microtubule assembly. J Neurochem. 1983 Oct;41(4):1119–1125. doi: 10.1111/j.1471-4159.1983.tb09060.x. [DOI] [PubMed] [Google Scholar]
- Yamamura H., Nishiyama K., Shimomura R., Nishizuka Y. Comparison of catalytic units of muscle and liver adenosine 3',5'-monophosphate dependent protein kinases. Biochemistry. 1973 Feb 27;12(5):856–862. doi: 10.1021/bi00729a012. [DOI] [PubMed] [Google Scholar]
- Yamauchi T., Fujisawa H. Evidence for three distinct forms of calmodulin-dependent protein kinases from rat brain. FEBS Lett. 1980 Jul 28;116(2):141–144. doi: 10.1016/0014-5793(80)80628-4. [DOI] [PubMed] [Google Scholar]
- Zanetti N. C., Mitchell D. R., Warner F. D. Effects of divalent cations on dynein cross bridging and ciliary microtubule sliding. J Cell Biol. 1979 Mar;80(3):573–588. doi: 10.1083/jcb.80.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
