Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Mar 1;102(3):821–829. doi: 10.1083/jcb.102.3.821

The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells

PMCID: PMC2114106  PMID: 3005337

Abstract

Nerve growth factor (NGF)-mediated neurite outgrowth in rat pheochromocytoma PC12 cells has been described to be synergistically potentiated by the simultaneous addition of dibutyryl cAMP. To elucidate further the role of cAMP in NGF-induced neurite outgrowth we have used the adenylate cyclase activator forskolin, cAMP, and a set of chemically modified cAMP analogues, including the adenosine cyclic 3',5'-phosphorothioates (cAMPS) (Rp)-cAMPS and (Sp)-cAMPS. These diastereomers have differential effects on the activation of cAMP- dependent protein kinases, i.e., (Sp)-cAMPS behaves as a cAMP agonist and (Rp)-cAMPS behaves as a cAMP antagonist. Our data show that the establishment of a neuritic network, as observed from PC12 cells treated with NGF alone, could not be induced by either forskolin, cAMP, or cAMP analogues alone. The presence of NGF in combination with forskolin or cAMP or its agonistic analogues potentiated the initiation of neurite outgrowth from PC12 cells. The (Sp)-cAMPS-induced stimulation of NGF-mediated process formation was successfully blocked by the (Rp)-cAMPS diastereomer. On the other hand, NGF-stimulated neurite outgrowth was not inhibited by the presence of the cAMP antagonist (Rp)-cAMPS. We conclude that the morphological differentiation of PC12 cells stimulated by NGF does not require cAMP as a second messenger. The constant increase of intracellular cAMP, caused by either forskolin or cAMP and the analogues, in combination with NGF, not only rapidly stimulated early neurite outgrowth but also exerted a maintaining effect on the neuronal network established by NGF.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Burstein D. E., Greene L. A. Evidence for RNA synthesis-dependent and -independent pathways in stimulation of neurite outgrowth by nerve growth factor. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6059–6063. doi: 10.1073/pnas.75.12.6059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Garrels J. I., Schubert D. Modulation of protein synthesis by nerve growth factor. J Biol Chem. 1979 Aug 25;254(16):7978–7985. [PubMed] [Google Scholar]
  3. Greene L. A., Burstein D. E., Black M. M. The role of transcription-dependent priming in nerve growth factor promoted neurite outgrowth. Dev Biol. 1982 Jun;91(2):305–316. doi: 10.1016/0012-1606(82)90037-9. [DOI] [PubMed] [Google Scholar]
  4. Greene L. A., Liem R. K., Shelanski M. L. Regulation of a high molecular weight microtubule-associated protein in PC12 cells by nerve growth factor. J Cell Biol. 1983 Jan;96(1):76–83. doi: 10.1083/jcb.96.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Greene L. A., Shooter E. M. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci. 1980;3:353–402. doi: 10.1146/annurev.ne.03.030180.002033. [DOI] [PubMed] [Google Scholar]
  6. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gunning P. W., Landreth G. E., Bothwell M. A., Shooter E. M. Differential and synergistic actions of nerve growth factor and cyclic AMP in PC12 cells. J Cell Biol. 1981 May;89(2):240–245. doi: 10.1083/jcb.89.2.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gunning P. W., Letourneau P. C., Landreth G. E., Shooter E. M. The action of nerve growth factor and dibutyryl adenosine cyclic 3':5'-monophosphate on rat pheochromocytoma reveals distinct stages in the mechanisms underlying neurite outgrowth. J Neurosci. 1981 Oct;1(10):1085–1095. doi: 10.1523/JNEUROSCI.01-10-01085.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Halegoua S., Patrick J. Nerve growth factor mediates phosphorylation of specific proteins. Cell. 1980 Nov;22(2 Pt 2):571–581. doi: 10.1016/0092-8674(80)90367-0. [DOI] [PubMed] [Google Scholar]
  10. Heumann R., Kachel V., Thoenen H. Relationship between NGF-mediated volume increase and "priming effect" in fast and slow reacting clones of PC12 pheochromocytoma cells. Role of cAMP. Exp Cell Res. 1983 Apr 15;145(1):179–190. doi: 10.1016/s0014-4827(83)80019-6. [DOI] [PubMed] [Google Scholar]
  11. Kaukel E., Hilz H. Permeation of dibutyryl cAMP into HeLa cells and its convesion to monobutyryl cAMP. Biochem Biophys Res Commun. 1972 Jan 31;46(2):1011–1018. doi: 10.1016/s0006-291x(72)80242-0. [DOI] [PubMed] [Google Scholar]
  12. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
  13. Murayama A., Jastorff B., Cramer F., Hettler H. 5'-amido analogs of adenosine 3',5'-cyclic monophosphate. J Org Chem. 1971 Oct 8;36(20):3029–3033. doi: 10.1021/jo00819a027. [DOI] [PubMed] [Google Scholar]
  14. O'Brian C. A., Roczniak S. O., Bramson H. N., Baraniak J., Stec W. J., Kaiser E. T. A kinetic study of interactions of (Rp)- and (Sp)-adenosine cyclic 3',5'-phosphorothioates with type II bovine cardiac muscle adenosine cyclic 3',5'-phosphate dependent protein kinase. Biochemistry. 1982 Aug 31;21(18):4371–4376. doi: 10.1021/bi00261a028. [DOI] [PubMed] [Google Scholar]
  15. Rabe C. S., McGee R., Jr Regulation of depolarization-dependent release of neurotransmitters by adenosine: cyclic AMP-dependent enhancement of release from PC12 cells. J Neurochem. 1983 Dec;41(6):1623–1634. doi: 10.1111/j.1471-4159.1983.tb00873.x. [DOI] [PubMed] [Google Scholar]
  16. Rabe C. S., Schneider J., McGee R., Jr Enhancement of depolarization-dependent neurosecretion from PC12 cells by forskolin-induced elevation of cyclic AMP. J Cyclic Nucleotide Res. 1982;8(6):371–384. [PubMed] [Google Scholar]
  17. Richter-Landsberg C., Jastorff B. In vitro phosphorylation of microtubule-associated protein 2: differential effects of cyclic AMP analogues. J Neurochem. 1985 Oct;45(4):1218–1222. doi: 10.1111/j.1471-4159.1985.tb05545.x. [DOI] [PubMed] [Google Scholar]
  18. Rothermel J. D., Jastorff B., Botelho L. H. Inhibition of glucagon-induced glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate. J Biol Chem. 1984 Jul 10;259(13):8151–8155. [PubMed] [Google Scholar]
  19. Rothermel J. D., Stec W. J., Baraniak J., Jastorff B., Botelho L. H. Inhibition of glycogenolysis in isolated rat hepatocytes by the Rp diastereomer of adenosine cyclic 3',5'-phosphorothioate. J Biol Chem. 1983 Oct 25;258(20):12125–12128. [PubMed] [Google Scholar]
  20. Schubert D., LaCorbiere M., Whitlock C., Stallcup W. Alterations in the surface properties of cells responsive to nerve growth factor. Nature. 1978 Jun 29;273(5665):718–723. doi: 10.1038/273718a0. [DOI] [PubMed] [Google Scholar]
  21. Schubert D., Whitlock C. Alteration of cellular adhesion by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Sep;74(9):4055–4058. doi: 10.1073/pnas.74.9.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Varon S. Nerve growth factor and its mode of action. Exp Neurol. 1975 Sep;48(3 Pt 2):75–92. doi: 10.1016/0014-4886(75)90172-7. [DOI] [PubMed] [Google Scholar]
  23. Walter U., Costa M. R., Breakefield X. O., Greengard P. Presence of free cyclic AMP receptor protein and regulation of its level by cyclic AMP in neuroblastoma-glioma hybrid cells. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3251–3255. doi: 10.1073/pnas.76.7.3251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Walter U., Kanof P., Schulman H., Greengard P. Adenosine 3':5'-monophosphate receptor proteins in mammalian brain. J Biol Chem. 1978 Sep 10;253(17):6275–6280. [PubMed] [Google Scholar]
  25. Yu M. W., Tolson N. W., Guroff G. Increased phosphorylation of specific nuclear proteins in superior cervical ganglia and PC12 cells in response to nerve growth factor. J Biol Chem. 1980 Nov 10;255(21):10481–10492. [PubMed] [Google Scholar]
  26. Ziegler W., Unsicker K. Differential effects of cyclic AMP and cholera toxin on nerve growth factor-induced neurite outgrowth from adrenal medullary chromaffin and pheochromocytoma cells. Brain Res. 1981 Jul;227(4):622–627. doi: 10.1016/0165-3806(81)90014-6. [DOI] [PubMed] [Google Scholar]
  27. de Wit R. J., Hekstra D., Jastorff B., Stec W. J., Baraniak J., Van Driel R., Van Haastert P. J. Inhibitory action of certain cyclophosphate derivatives of cAMP on cAMP-dependent protein kinases. Eur J Biochem. 1984 Jul 16;142(2):255–260. doi: 10.1111/j.1432-1033.1984.tb08279.x. [DOI] [PubMed] [Google Scholar]
  28. de Wit R. J., Hoppe J., Stec W. J., Baraniak J., Jastorff B. Interaction of cAMP derivatives with the 'stable' cAMP-binding site in the cAMP-dependent protein kinase type I. Eur J Biochem. 1982 Feb;122(1):95–99. doi: 10.1111/j.1432-1033.1982.tb05852.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES