Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Mar 1;102(3):795–802. doi: 10.1083/jcb.102.3.795

Selective effects of ascorbic acid on acetylcholine receptor number and distribution

PMCID: PMC2114108  PMID: 3949879

Abstract

Ascorbic acid in soluble extracts of neural tissue can account for the increase in surface acetylcholine receptors (AChR's) seen on L5 myogenic cells treated with crude brain extract (Knaack, D., and T. R. Podleski, 1985, Proc. Natl. Acad. Sci. USA., 82:575-579). The present study further elucidates the nature of the response of L5 cells to ascorbic acid. Light autoradiography showed that ascorbic acid treatment affects both the number and distribution of surface AChR's. Ascorbic acid, like crude brain extracts, caused a three- to fourfold increase in average AChR site density. However, the number of AChR clusters induced by ascorbic acid was only one-fifth that observed with crude brain extract. The rate constant for degradation of AChR in ascorbic acid-treated cells of 0.037 +/- 0.006 h-1 (t1/2 = 19 h) was not significantly different from that in untreated controls of 0.050 +/- 0.001 h-1 (t1/2 = 14 h). The increase in AChR site density is primarily due to a 2.8-fold increase in the average rate of AChR incorporation. Ascorbic acid also stimulates thymidine incorporation and increases the total number of nuclei per culture. However, cellular proliferation is not responsible for the increase in AChR's since 10 microM cytosine arabinofuranoside blocks the mitogenic effect without affecting the AChR increase. The specificity of ascorbic acid on AChR expression was established by showing that (a) ascorbic acid produced only a slight increase in total protein, which can be accounted for by the mitogenic effect, and (b) the normal increase seen in creatine kinase activity during muscle differentiation was not altered by the addition of ascorbic acid. We conclude that the action of ascorbic acid on AChR number cannot be explained by changes in cell growth, survival, differentiation, or protein synthesis. Therefore, in addition to a minor stimulation of AChR clustering, ascorbic acid specifically affects some aspect of the AChR biosynthetic pathway.

Full Text

The Full Text of this article is available as a PDF (1,002.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AXELSSON J., THESLEFF S. A study of supersensitivity in denervated mammalian skeletal muscle. J Physiol. 1959 Jun 23;147(1):178–193. doi: 10.1113/jphysiol.1959.sp006233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauer H. C., Daniels M. P., Pudimat P. A., Jacques L., Sugiyama H., Christian C. N. Characterization and partial purification of a neuronal factor which increases acetylcholine receptor aggregation on cultured muscle cells. Brain Res. 1981 Mar 30;209(2):395–404. doi: 10.1016/0006-8993(81)90161-x. [DOI] [PubMed] [Google Scholar]
  3. Bevan S., Steinbach J. H. The distribution of alpha-bungarotoxin binding sites of mammalian skeletal muscle developing in vivo. J Physiol. 1977 May;267(1):195–213. doi: 10.1113/jphysiol.1977.sp011808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bigelow J. C., Brown D. S., Wightman R. M. Gamma-aminobutyric acid stimulates the release of endogenous ascorbic acid from rat striatal tissue. J Neurochem. 1984 Feb;42(2):412–419. doi: 10.1111/j.1471-4159.1984.tb02693.x. [DOI] [PubMed] [Google Scholar]
  5. Buc-Caron M. H., Nystrom P., Fischbach G. D. Induction of acetylcholine receptor synthesis and aggregation: partial purification of low-molecular-weight activity. Dev Biol. 1983 Feb;95(2):378–386. doi: 10.1016/0012-1606(83)90039-8. [DOI] [PubMed] [Google Scholar]
  6. Burden S. Development of the neuromuscular junction in the chick embryo: the number, distribution, and stability of acetylcholine receptors. Dev Biol. 1977 Jun;57(2):317–329. doi: 10.1016/0012-1606(77)90218-4. [DOI] [PubMed] [Google Scholar]
  7. Christian C. N., Daniels M. P., Sugiyama H., Vogel Z., Jacques L., Nelson P. G. A factor from neurons increases the number of acetylcholine receptor aggregates on cultured muscle cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):4011–4015. doi: 10.1073/pnas.75.8.4011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen S. A., Fischbach G. D. Clusters of acetylcholine receptors located at identified nerve-muscle synapses in vitro. Dev Biol. 1977 Aug;59(1):24–38. doi: 10.1016/0012-1606(77)90237-8. [DOI] [PubMed] [Google Scholar]
  9. Devreotes P. N., Fambrough D. M. Acetylcholine receptor turnover in membranes of developing muscle fibers. J Cell Biol. 1975 May;65(2):335–358. doi: 10.1083/jcb.65.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fabro S. P., Rinaldini L. M. Loss of ascorbic acid synthesis in embryonic development. Dev Biol. 1965 Jun;11(3):468–488. doi: 10.1016/0012-1606(65)90051-5. [DOI] [PubMed] [Google Scholar]
  11. Fertuck H. C., Salpeter M. M. Sensitivity in electron microscope autoradiography for 125I. J Histochem Cytochem. 1974 Feb;22(2):80–87. doi: 10.1177/22.2.80. [DOI] [PubMed] [Google Scholar]
  12. Gospodarowicz D., Bialecki H., Greenburg G. Purification of the fibroblast growth factor activity from bovine brain. J Biol Chem. 1978 May 25;253(10):3736–3743. [PubMed] [Google Scholar]
  13. Graff G. L., Hudson A. J., Strickland K. P. Changes in the relative amounts of ascorbic acid and glycogen in denervated rat gastrocnemius muscle. Can J Biochem. 1965 Jun;43(6):705–710. doi: 10.1139/o65-081. [DOI] [PubMed] [Google Scholar]
  14. Hornig D. Distribution of ascorbic acid, metabolites and analogues in man and animals. Ann N Y Acad Sci. 1975 Sep 30;258:103–118. doi: 10.1111/j.1749-6632.1975.tb29271.x. [DOI] [PubMed] [Google Scholar]
  15. Illg D., Pette D. Turnover rates of hexokinase I, phosphofructokinase, pyruvate kinase and creatine kinase in slow-twitch soleus muscle and heart of the rabbit. Eur J Biochem. 1979 Jun;97(1):267–273. doi: 10.1111/j.1432-1033.1979.tb13111.x. [DOI] [PubMed] [Google Scholar]
  16. Jessell T. M., Siegel R. E., Fischbach G. D. Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5397–5401. doi: 10.1073/pnas.76.10.5397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kalcheim C., Duksin D., Vogel Z. Involvement of collagen in the aggregation of acetylcholine receptors on cultured muscle cells. J Biol Chem. 1982 Nov 10;257(21):12722–12727. [PubMed] [Google Scholar]
  18. Kalcheim C., Vogel Z., Duksin D. Embryonic brain extract induces collagen biosynthesis in cultured muscle cells: involvement in acetylcholine receptor aggregation. Proc Natl Acad Sci U S A. 1982 May;79(10):3077–3081. doi: 10.1073/pnas.79.10.3077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Knaack D., Podleski T. Ascorbic acid mediates acetylcholine receptor increase induced by brain extract on myogenic cells. Proc Natl Acad Sci U S A. 1985 Jan;82(2):575–579. doi: 10.1073/pnas.82.2.575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krishnamoorthy R. V., Satyam P. Changes in ascorbic acid content in denervated frog gastrocnemius muscle. Experientia. 1969 Mar 15;25(3):267–268. doi: 10.1007/BF02034383. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Land B. R., Podleski T. R., Salpeter E. E., Salpeter M. M. Acetylcholine receptor distribution on myotubes in culture correlated to acetylcholine sensitivity. J Physiol. 1977 Jul;269(1):155–176. doi: 10.1113/jphysiol.1977.sp011897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Markelonis G. J., Oh T. H., Eldefrawi M. E., Guth L. Sciatin: a myotrophic protein increases the number of acetylcholine receptors and receptor clusters in cultured skeletal muscle. Dev Biol. 1982 Feb;89(2):353–361. doi: 10.1016/0012-1606(82)90324-4. [DOI] [PubMed] [Google Scholar]
  24. Matthews-Bellinger J., Salpeter M. M. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J Physiol. 1978 Jun;279:197–213. doi: 10.1113/jphysiol.1978.sp012340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Miledi R., Potter L. T. Acetylcholine receptors in muscle fibres. Nature. 1971 Oct 29;233(5322):599–603. doi: 10.1038/233599a0. [DOI] [PubMed] [Google Scholar]
  26. NIELSEN L., LUDVIGSEN B. Improved method for determination of creatine kinase. J Lab Clin Med. 1963 Jul;62:159–168. [PubMed] [Google Scholar]
  27. Neugebauer K., Salpeter M. M., Podleski T. R. Differential responses of L5 and rat primary muscle cells to factors in rat brain extract. Brain Res. 1985 Oct 28;346(1):58–69. doi: 10.1016/0006-8993(85)91094-7. [DOI] [PubMed] [Google Scholar]
  28. Patnaik B. K., Kanungo M. S. Ascorbic acid and aging in the rat. Uptake of ascorbic acid by teeth and concentration of various forms of ascorbic acid in different organs. Biochem J. 1966 Jul;100(1):59–62. doi: 10.1042/bj1000059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Podleski T. R., Axelrod D., Ravdin P., Greenberg I., Johnson M. M., Salpeter M. M. Nerve extract induces increase and redistribution of acetylcholine receptors on cloned muscle cells. Proc Natl Acad Sci U S A. 1978 Apr;75(4):2035–2039. doi: 10.1073/pnas.75.4.2035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Salpeter M. M., Spanton S., Holley K., Podleski T. R. Brain extract causes acetylcholine receptor redistribution which mimics some early events at developing neuromuscular junctions. J Cell Biol. 1982 May;93(2):417–425. doi: 10.1083/jcb.93.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Salpeter M. M., Szabo M. Sensitivity in electron microscope autoradiography. I. The effect of radiation dose. J Histochem Cytochem. 1972 Jun;20(6):425–434. doi: 10.1177/20.6.425. [DOI] [PubMed] [Google Scholar]
  32. Schimke R. T., Doyle D. Control of enzyme levels in animal tissues. Annu Rev Biochem. 1970;39:929–976. doi: 10.1146/annurev.bi.39.070170.004433. [DOI] [PubMed] [Google Scholar]
  33. Shainberg A., Yagil G., Yaffe D. Alterations of enzymatic activities during muscle differentiation in vitro. Dev Biol. 1971 May;25(1):1–29. doi: 10.1016/0012-1606(71)90017-0. [DOI] [PubMed] [Google Scholar]
  34. Vyskocil F., Syrový I. Do peripheral nerves contain a factor inducing acetylcholine sensitivity in skeletal muscle? Experientia. 1979 Feb 15;35(2):218–219. doi: 10.1007/BF01920626. [DOI] [PubMed] [Google Scholar]
  35. Wolitzky B. A., Hudecki M. S., Segal H. L. Turnover of myofibrillar proteins in cultured muscle cells from normal and dystrophic chick embryos. Biochim Biophys Acta. 1984 Feb 17;803(1-2):106–114. doi: 10.1016/0167-4889(84)90061-2. [DOI] [PubMed] [Google Scholar]
  36. Wolitzky B. A., Segal H. L., Hudecki M. S. Similarities in protein synthesis and degradation in normal and dystrophic muscle cultures. Exp Cell Res. 1982 Feb;137(2):295–299. doi: 10.1016/0014-4827(82)90030-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES