Abstract
Different types of unusual dynamic behavior have been reported for steady-state microtubules. While almost all earlier reports relied on kinetic measurements of bulk polymerization, we have directly visualized the steady-state addition of subunits to individual microtubules through the use of tubulin derivitized with biotin. Biotinylated tubulin was used both as an internal "seed" for polymerization and as a marker for assembly onto the ends of microtubules composed of purified tubulin. Biotinylated segments were distinguished from unmodified tubulin by double-label immunofluorescence. Microtubule lengths, number concentrations, and segment lengths have been monitored with time at steady state under two buffer conditions. The results indicate that the microtubule steady state under these conditions is a balance between a majority of slowly growing microtubules and a minority of rapidly depolymerizing ones as described by the "dynamic instability" model (Mitchison T., and M. Kirschner, 1984, Nature (Lond.)., 312:232-242). Microtubules show no evidence of treadmilling; instead most show progressive growth off both ends at steady state. Although solvent conditions markedly influence the growth rates, qualitatively the behavior is unchanged.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Carlier M. F., Hill T. L., Chen Y. Interference of GTP hydrolysis in the mechanism of microtubule assembly: an experimental study. Proc Natl Acad Sci U S A. 1984 Feb;81(3):771–775. doi: 10.1073/pnas.81.3.771. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carlier M. F., Pantaloni D. Kinetic analysis of guanosine 5'-triphosphate hydrolysis associated with tubulin polymerization. Biochemistry. 1981 Mar 31;20(7):1918–1924. doi: 10.1021/bi00510a030. [DOI] [PubMed] [Google Scholar]
- Chen Y., Hill T. L. Theoretical treatment of microtubules disappearing in solution. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4127–4131. doi: 10.1073/pnas.82.12.4127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen Y., Hill T. L. Use of Monte Carlo calculations in the study of microtubule subunit kinetics. Proc Natl Acad Sci U S A. 1983 Dec;80(24):7520–7523. doi: 10.1073/pnas.80.24.7520. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cote R. H., Borisy G. G. Head-to-tail polymerization of microtubules in vitro. J Mol Biol. 1981 Aug 25;150(4):577–599. doi: 10.1016/0022-2836(81)90382-x. [DOI] [PubMed] [Google Scholar]
- Henderson R., Jubb J. S., Whytock S. Specific labelling of the protein and lipid on the extracellular surface of purple membrane. J Mol Biol. 1978 Aug 5;123(2):259–274. doi: 10.1016/0022-2836(78)90325-x. [DOI] [PubMed] [Google Scholar]
- Hill T. L., Carlier M. F. Steady-state theory of the interference of GTP hydrolysis in the mechanism of microtubule assembly. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7234–7238. doi: 10.1073/pnas.80.23.7234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hill T. L. Phase-change kinetics for a microtubule with two free ends. Proc Natl Acad Sci U S A. 1985 Jan;82(2):431–435. doi: 10.1073/pnas.82.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Karr T. L., White H. D., Purich D. L. Characterization of brain microtubule proteins prepared by selective removal of mitochondrial and synaptosomal components. J Biol Chem. 1979 Jul 10;254(13):6107–6111. [PubMed] [Google Scholar]
- Kristofferson D., Karr T. L., Purich D. L. Dynamics of linear protein polymer disassembly. J Biol Chem. 1980 Sep 25;255(18):8567–8572. [PubMed] [Google Scholar]
- Kristofferson D., Purich D. L. Time scale of microtubule length redistribution. Arch Biochem Biophys. 1981 Oct 1;211(1):222–226. doi: 10.1016/0003-9861(81)90447-1. [DOI] [PubMed] [Google Scholar]
- Lee J. C., Frigon R. P., Timasheff S. N. The chemical characterization of calf brain microtubule protein subunits. J Biol Chem. 1973 Oct 25;248(20):7253–7262. [PubMed] [Google Scholar]
- Lee S. H., Kristofferson D., Purich D. L. Microtubule interactions with GDP provide evidence that assembly-disassembly properties depend on the method of brain microtubule protein isolation. Biochem Biophys Res Commun. 1982 Apr 29;105(4):1605–1610. doi: 10.1016/0006-291x(82)90972-x. [DOI] [PubMed] [Google Scholar]
- MacNeal R. K., Webb B. C., Purich D. L. Neurotubule assembly at substoichiometric nucleotide levels using a GTP regenerating system. Biochem Biophys Res Commun. 1977 Jan 24;74(2):440–447. doi: 10.1016/0006-291x(77)90323-0. [DOI] [PubMed] [Google Scholar]
- Margolis R. L. Role of GTP hydrolysis in microtubule treadmilling and assembly. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1586–1590. doi: 10.1073/pnas.78.3.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margolis R. L., Wilson L. Opposite end assembly and disassembly of microtubules at steady state in vitro. Cell. 1978 Jan;13(1):1–8. doi: 10.1016/0092-8674(78)90132-0. [DOI] [PubMed] [Google Scholar]
- Mitchison T. J., Kirschner M. W. Properties of the kinetochore in vitro. I. Microtubule nucleation and tubulin binding. J Cell Biol. 1985 Sep;101(3):755–765. doi: 10.1083/jcb.101.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
- Mitchison T., Kirschner M. Microtubule assembly nucleated by isolated centrosomes. Nature. 1984 Nov 15;312(5991):232–237. doi: 10.1038/312232a0. [DOI] [PubMed] [Google Scholar]
- Terry B. J., Purich D. L. Assembly and disassembly properties of microtubules formed in the presence of GTP, 5'-guanylyl imidodiphosphate, and 5'-guanylyl methylenediphosphate. J Biol Chem. 1980 Nov 10;255(21):10532–10536. [PubMed] [Google Scholar]
- Wegner A. Head to tail polymerization of actin. J Mol Biol. 1976 Nov;108(1):139–150. doi: 10.1016/s0022-2836(76)80100-3. [DOI] [PubMed] [Google Scholar]
- Weingarten M. D., Lockwood A. H., Hwo S. Y., Kirschner M. W. A protein factor essential for microtubule assembly. Proc Natl Acad Sci U S A. 1975 May;72(5):1858–1862. doi: 10.1073/pnas.72.5.1858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeeberg B., Reid R., Caplow M. Incorporation of radioactive tubulin into microtubules at steady state. Experimental and theoretical analyses of diffusional and directional flux. J Biol Chem. 1980 Oct 25;255(20):9891–9899. [PubMed] [Google Scholar]