Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Mar 1;102(3):853–858. doi: 10.1083/jcb.102.3.853

Chemical factors that influence nucleocytoplasmic transport: a fluorescence photobleaching study

PMCID: PMC2114113  PMID: 2419344

Abstract

The technique of fluorescence redistribution after photobleaching was used to measure the translocation rate of fluorescein-labeled dextrans across the nuclear pore complex in isolated rat liver nuclei. A transport assay system was established that could monitor the effect of biologically active molecules, e.g., ATP, GTP, cAMP on the translocation process. The results show that ATP, phosphoinositides, RNA, and insulin can enhance transport rates from 195 to 432%. It was further demonstrated that concanavalin A, but not wheat germ or soybean agglutinin, can block dextran transport completely. The effectors of dextran transport are similar to substances demonstrated to effect the efflux of RNA from isolated nuclei. A model for translocation through the nuclear pore is now presented that incorporates data from protein influx and RNA efflux experiments into a single pathway controlled by ATP.

Full Text

The Full Text of this article is available as a PDF (610.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agutter P. S. Influence of nucleotides, cations and nucleoside triphosphatase inhibitors on the release of ribonucleic acid from isolated rat liver nuclei. Biochem J. 1980 Apr 15;188(1):91–97. doi: 10.1042/bj1880091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agutter P. S. Nucleocytoplasmic RNA transport. Subcell Biochem. 1984;10:281–357. doi: 10.1007/978-1-4613-2709-7_5. [DOI] [PubMed] [Google Scholar]
  3. Baer B. W., Kornberg R. D. The protein responsible for the repeating structure of cytoplasmic poly(A)-ribonucleoprotein. J Cell Biol. 1983 Mar;96(3):717–721. doi: 10.1083/jcb.96.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baglia F. A., Maul G. G. Nuclear ribonucleoprotein release and nucleoside triphosphatase activity are inhibited by antibodies directed against one nuclear matrix glycoprotein. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2285–2289. doi: 10.1073/pnas.80.8.2285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Berrios M., Blobel G., Fisher P. A. Characterization of an ATPase/dATPase activity associated with the Drosophila nuclear matrix-pore complex-lamina fraction. Identification of the putative enzyme polypeptide by direct ultraviolet photoaffinity labeling. J Biol Chem. 1983 Apr 10;258(7):4548–4555. [PubMed] [Google Scholar]
  6. Clawson G. A., James J., Woo C. H., Friend D. S., Moody D., Smuckler E. A. Pertinence of nuclear envelope nucleoside triphosphatase activity to ribonucleic acid transport. Biochemistry. 1980 Jun 10;19(12):2748–2756. doi: 10.1021/bi00553a033. [DOI] [PubMed] [Google Scholar]
  7. Dabauvalle M. C., Franke W. W. Karyophilic proteins: polypeptides synthesized in vitro accumulate in the nucleus on microinjection into the cytoplasm of amphibian oocytes. Proc Natl Acad Sci U S A. 1982 Sep;79(17):5302–5306. doi: 10.1073/pnas.79.17.5302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. De Robertis E. M. Nucleocytoplasmic segregation of proteins and RNAs. Cell. 1983 Apr;32(4):1021–1025. doi: 10.1016/0092-8674(83)90285-4. [DOI] [PubMed] [Google Scholar]
  9. Dingwall C., Allan J. Accumulation of the isolated carboxy-terminal domain of histone H1 in the Xenopus oocyte nucleus. EMBO J. 1984 Sep;3(9):1933–1937. doi: 10.1002/j.1460-2075.1984.tb02072.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dingwall C., Sharnick S. V., Laskey R. A. A polypeptide domain that specifies migration of nucleoplasmin into the nucleus. Cell. 1982 Sep;30(2):449–458. doi: 10.1016/0092-8674(82)90242-2. [DOI] [PubMed] [Google Scholar]
  11. FELDHERR C. M. THE EFFECT OF THE ELECTRON-OPAQUE PORE MATERIAL ON EXCHANGES THROUGH THE NUCLEAR ANNULI. J Cell Biol. 1965 Apr;25:43–53. doi: 10.1083/jcb.25.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Feldherr C. M., Kallenbach E., Schultz N. Movement of a karyophilic protein through the nuclear pores of oocytes. J Cell Biol. 1984 Dec;99(6):2216–2222. doi: 10.1083/jcb.99.6.2216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gall J. G. Octagonal nuclear pores. J Cell Biol. 1967 Feb;32(2):391–399. doi: 10.1083/jcb.32.2.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gerace L., Ottaviano Y., Kondor-Koch C. Identification of a major polypeptide of the nuclear pore complex. J Cell Biol. 1982 Dec;95(3):826–837. doi: 10.1083/jcb.95.3.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kalderon D., Richardson W. D., Markham A. F., Smith A. E. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Nature. 1984 Sep 6;311(5981):33–38. doi: 10.1038/311033a0. [DOI] [PubMed] [Google Scholar]
  16. Kay R. R., Fraser D., Johnston I. R. A method for the rapid isolation of nuclear membranes from rat liver. Characterisation of the membrane preparation and its associated DNA polymerase. Eur J Biochem. 1972 Oct 17;30(1):145–154. doi: 10.1111/j.1432-1033.1972.tb02081.x. [DOI] [PubMed] [Google Scholar]
  17. Machicao E., Wieland O. H. Evidence that the insulin receptor-associated protein kinase acts as a phosphatidylinositol kinase. FEBS Lett. 1984 Sep 17;175(1):113–116. doi: 10.1016/0014-5793(84)80581-5. [DOI] [PubMed] [Google Scholar]
  18. Maul G. G. The nuclear and the cytoplasmic pore complex: structure, dynamics, distribution, and evolution. Int Rev Cytol Suppl. 1977;(6):75–186. [PubMed] [Google Scholar]
  19. Paine P. L., Moore L. C., Horowitz S. B. Nuclear envelope permeability. Nature. 1975 Mar 13;254(5496):109–114. doi: 10.1038/254109a0. [DOI] [PubMed] [Google Scholar]
  20. Peters R. Flux measurement in single cells by fluorescence microphotolysis. Eur Biophys J. 1984;11(1):43–50. doi: 10.1007/BF00253857. [DOI] [PubMed] [Google Scholar]
  21. Peters R. Nuclear envelope permeability measured by fluorescence microphotolysis of single liver cell nuclei. J Biol Chem. 1983 Oct 10;258(19):11427–11429. [PubMed] [Google Scholar]
  22. Peters R. Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis. EMBO J. 1984 Aug;3(8):1831–1836. doi: 10.1002/j.1460-2075.1984.tb02055.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Purrello F., Vigneri R., Clawson G. A., Goldfine I. D. Insulin stimulation of nucleoside triphosphatase activity in isolated nuclear envelopes. Science. 1982 May 28;216(4549):1005–1007. doi: 10.1126/science.6281885. [DOI] [PubMed] [Google Scholar]
  24. RENKIN E. M. Filtration, diffusion, and molecular sieving through porous cellulose membranes. J Gen Physiol. 1954 Nov 20;38(2):225–243. [PMC free article] [PubMed] [Google Scholar]
  25. Schindler M. Alterations in nuclear anatomy by chemical modification of proteins in isolated rat liver nuclei. Exp Cell Res. 1984 Jan;150(1):84–96. doi: 10.1016/0014-4827(84)90704-3. [DOI] [PubMed] [Google Scholar]
  26. Schindler M., Holland J. F., Hogan M. Lateral diffusion in nuclear membranes. J Cell Biol. 1985 May;100(5):1408–1414. doi: 10.1083/jcb.100.5.1408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schumm D. E., Webb T. E. Insulin-modulated transport of RNA from isolated live nuclei. Arch Biochem Biophys. 1981 Aug;210(1):275–279. doi: 10.1016/0003-9861(81)90190-9. [DOI] [PubMed] [Google Scholar]
  28. Smith C. D., Wells W. W. Solubilization and reconstitution of a nuclear envelope-associated ATPase. Synergistic activation by RNA and polyphosphoinositides. J Biol Chem. 1984 Oct 10;259(19):11890–11894. [PubMed] [Google Scholar]
  29. Stevens B. J., Swift H. RNA transport from nucleus to cytoplasm in Chironomus salivary glands. J Cell Biol. 1966 Oct;31(1):55–77. doi: 10.1083/jcb.31.1.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Unwin P. N., Milligan R. A. A large particle associated with the perimeter of the nuclear pore complex. J Cell Biol. 1982 Apr;93(1):63–75. doi: 10.1083/jcb.93.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Virtanen I. Identification of concanavalin A binding glycoproteins of rat liver cell nuclear membranes. Biochem Biophys Res Commun. 1977 Oct 24;78(4):1411–1417. doi: 10.1016/0006-291x(77)91449-8. [DOI] [PubMed] [Google Scholar]
  32. Wunderlich F., Franke W. W. Structure of macronuclear envelopes of Tetrahymena pyriformis in the stationary phase of growth. J Cell Biol. 1968 Aug;38(2):458–462. doi: 10.1083/jcb.38.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES