Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Mar 1;102(3):803–811. doi: 10.1083/jcb.102.3.803

Brain peptides and glial growth. I. Glia-promoting factors as regulators of gliogenesis in the developing and injured central nervous system

PMCID: PMC2114119  PMID: 3949880

Abstract

Glia-promoting factors (GPFs) are peptides of the central nervous system which accelerate the growth of specific glial populations in vitro. Although these factors were first discovered in the goldfish visual system (Giulian, D., Y. Tomozawa, H. Hindman, and R. Allen, 1985, Proc. Natl. Acad. Sci. USA., 83:4287-4290), we now report similar peptides are found in mammalian brain. The cerebral cortex of rat contains oligodendroglia-stimulating peptides, GPF1 (15 kD) and GPF3 (6 kD), as well as astroglia-stimulating peptides, GPF2 (9 kD) and GPF4 (3 kD). The concentrations of specific GPFs increase in brain during periods of gliogenesis. For example, GPF1 and GPF3 are found in postnatal rat brain during a peak of oligondendroglial growth while GPF2 and GPF4 are first detected at a time of astroglial proliferation in the embryo. Stab wound injury to the cerebral cortices of rats stimulates astroglial proliferation and induces marked elevations in levels of GPF2 and GPF4. Our findings suggest that two distinct classes of GPFs, those acting upon oligodendroglia and those acting upon astroglia, help to regulate cell growth in the developing and injured central nervous system.

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., David S., Bray G. M. Influences of the glial environment on the elongation of axons after injury: transplantation studies in adult rodents. J Exp Biol. 1981 Dec;95:231–240. doi: 10.1242/jeb.95.1.231. [DOI] [PubMed] [Google Scholar]
  2. Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
  3. Bottenstein J. E., Sato G. H. Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A. 1979 Jan;76(1):514–517. doi: 10.1073/pnas.76.1.514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Böhlen P., Stein S., Dairman W., Udenfriend S. Fluorometric assay of proteins in the nanogram range. Arch Biochem Biophys. 1973 Mar;155(1):213–220. doi: 10.1016/s0003-9861(73)80023-2. [DOI] [PubMed] [Google Scholar]
  5. Dennis S. C., Lai J. C., Clark J. B. The distribution of glutamine synthetase in subcellular fractions of rat brain. Brain Res. 1980 Sep 22;197(2):469–475. doi: 10.1016/0006-8993(80)91131-2. [DOI] [PubMed] [Google Scholar]
  6. Giulian D., Iwanij V., Stuckenbrok H. The response of optic tract glia during regeneration of the goldfish visual system. I. Biosynthetic activity within different glial populations after transection of retinal ganglion cell axons. Brain Res. 1985 Jul 22;339(1):87–96. doi: 10.1016/0006-8993(85)90624-9. [DOI] [PubMed] [Google Scholar]
  7. Giulian D., Iwanij V. The response of optic tract glia during regeneration of the goldfish visual system. II. Tectal factors stimulate optic tract glia. Brain Res. 1985 Jul 22;339(1):97–104. doi: 10.1016/0006-8993(85)90625-0. [DOI] [PubMed] [Google Scholar]
  8. Giulian D., Lachman L. B. Interleukin-1 stimulation of astroglial proliferation after brain injury. Science. 1985 Apr 26;228(4698):497–499. doi: 10.1126/science.3872478. [DOI] [PubMed] [Google Scholar]
  9. Giulian D. Peptides from the regenerating central nervous system of goldfish stimulate glia. Proc Natl Acad Sci U S A. 1984 Jun;81(11):3567–3571. doi: 10.1073/pnas.81.11.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Giulian D., Tomozawa Y., Hindman H., Allen R. L. Peptides from regenerating central nervous system promote specific populations of macroglia. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4287–4290. doi: 10.1073/pnas.82.12.4287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giulian D., Young D. G. Brain peptides and glial growth. II. Identification of cells that secrete glia-promoting factors. J Cell Biol. 1986 Mar;102(3):812–820. doi: 10.1083/jcb.102.3.812. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gospodarowicz D., Moran J. S. Growth factors in mammalian cell culture. Annu Rev Biochem. 1976;45:531–558. doi: 10.1146/annurev.bi.45.070176.002531. [DOI] [PubMed] [Google Scholar]
  13. Hallermayer K., Harmening C., Hamprecht B. Cellular localization and regulation of glutamine synthetase in primary cultures of brain cells from newborn mice. J Neurochem. 1981 Jul;37(1):43–52. doi: 10.1111/j.1471-4159.1981.tb05289.x. [DOI] [PubMed] [Google Scholar]
  14. Lemke G. E., Brockes J. P. Identification and purification of glial growth factor. J Neurosci. 1984 Jan;4(1):75–83. doi: 10.1523/JNEUROSCI.04-01-00075.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lemmon S. K., Riley M. C., Thomas K. A., Hoover G. A., Maciag T., Bradshaw R. A. Bovine fibroblast growth factor: comparison of brain and pituitary preparations. J Cell Biol. 1982 Oct;95(1):162–169. doi: 10.1083/jcb.95.1.162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lim R. Glia maturation factor. Curr Top Dev Biol. 1980;16:305–322. [PubMed] [Google Scholar]
  17. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neuman D., Yerushalmi A., Schwartz M. Inhibition of non-neuronal cell proliferation in the goldfish visual pathway affects the regenerative capacity of the retina. Brain Res. 1983 Aug 8;272(2):237–245. doi: 10.1016/0006-8993(83)90569-3. [DOI] [PubMed] [Google Scholar]
  19. Norenberg M. D., Martinez-Hernandez A. Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res. 1979 Feb 2;161(2):303–310. doi: 10.1016/0006-8993(79)90071-4. [DOI] [PubMed] [Google Scholar]
  20. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  21. Raff M. C., Miller R. H., Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature. 1983 Jun 2;303(5916):390–396. doi: 10.1038/303390a0. [DOI] [PubMed] [Google Scholar]
  22. Raff M. C., Mirsky R., Fields K. L., Lisak R. P., Dorfman S. H., Silberberg D. H., Gregson N. A., Leibowitz S., Kennedy M. C. Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature. 1978 Aug 24;274(5673):813–816. [PubMed] [Google Scholar]
  23. Rakic P. Mode of cell migration to the superficial layers of fetal monkey neocortex. J Comp Neurol. 1972 May;145(1):61–83. doi: 10.1002/cne.901450105. [DOI] [PubMed] [Google Scholar]
  24. Silver J., Lorenz S. E., Wahlsten D., Coughlin J. Axonal guidance during development of the great cerebral commissures: descriptive and experimental studies, in vivo, on the role of preformed glial pathways. J Comp Neurol. 1982 Sep 1;210(1):10–29. doi: 10.1002/cne.902100103. [DOI] [PubMed] [Google Scholar]
  25. Silver J., Sidman R. L. A mechanism for the guidance and topographic patterning of retinal ganglion cell axons. J Comp Neurol. 1980 Jan 1;189(1):101–111. doi: 10.1002/cne.901890106. [DOI] [PubMed] [Google Scholar]
  26. Singer M., Nordlander R. H., Egar M. Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: the blueprint hypothesis of neuronal pathway patterning. J Comp Neurol. 1979 May 1;185(1):1–21. doi: 10.1002/cne.901850102. [DOI] [PubMed] [Google Scholar]
  27. Sturrock R. R. Histogenesis of the anterior limb of the anterior commissure of the mouse brain. 3. An electron microscopic study of gliogenesis. J Anat. 1974 Feb;117(Pt 1):37–53. [PMC free article] [PubMed] [Google Scholar]
  28. Thiele D. L., Kurosaka M., Lipsky P. E. Phenotype of the accessory cell necessary for mitogen-stimulated T and B cell responses in human peripheral blood: delineation by its sensitivity to the lysosomotropic agent, L-leucine methyl ester. J Immunol. 1983 Nov;131(5):2282–2290. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES