Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Mar 1;102(3):740–747. doi: 10.1083/jcb.102.3.740

Fibroblasts promote the formation of a continuous basal lamina during myogenesis in vitro

PMCID: PMC2114123  PMID: 3949876

Abstract

Analyses were made of the requirements for the formation of a continuous basal lamina during myogenesis of quail muscle in vitro. A culture system was developed in which mass cultures of differentiating muscle cells were embedded in a native gel of rat tail collagen. Fibroblastic cells, which were also present in the cultures, migrated into the gel and within a few days surrounded the newly formed myotubes. In this environment, a continuous basal lamina was formed at the surface of the myotubes as demonstrated by immunofluorescent staining with monoclonal antibodies against type IV collagen, laminin, and heparan sulfate, as well as by electron microscopic immunolocalization. To distinguish between the role of the fibroblasts and the collagen gel in promoting basal lamina formation, clones of quail muscle cells lacking fibroblasts were subsequently embedded in a native rat tail collagen gel. Under these conditions, only very limited fluorescent staining for basement membrane components was observed associated with the myotubes. However, the introduction of chick muscle or skin fibroblasts into the clonal cultures just before gel formation resulted in the formation of an extensive basal lamina on the surface of the myotubes. Conditioned medium from fibroblast cultures by itself was not effective in promoting basal lamina formation. These results clearly show that during myogenesis in vitro fibroblasts must be in close proximity to the myotubes for a continuous basal lamina to form. These results probably relate closely to the interactions that must occur during myogenesis in vivo between the muscle cells and the surrounding connective tissue including the developing tendons.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Fambrough D. M. Aggregates of acetylcholine receptors are associated with plaques of a basal lamina heparan sulfate proteoglycan on the surface of skeletal muscle fibers. J Cell Biol. 1983 Nov;97(5 Pt 1):1396–1411. doi: 10.1083/jcb.97.5.1396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bayne E. K., Anderson M. J., Fambrough D. M. Extracellular matrix organization in developing muscle: correlation with acetylcholine receptor aggregates. J Cell Biol. 1984 Oct;99(4 Pt 1):1486–1501. doi: 10.1083/jcb.99.4.1486. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borg T. K., Caulfield J. B. Morphology of connective tissue in skeletal muscle. Tissue Cell. 1980;12(1):197–207. doi: 10.1016/0040-8166(80)90061-0. [DOI] [PubMed] [Google Scholar]
  4. Caplan A. I. A simplified procedure for preparing myogenic cells for culture. J Embryol Exp Morphol. 1976 Aug;36(1):175–181. [PubMed] [Google Scholar]
  5. Chevallier A., Kieny M., Mauger A. Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol. 1977 Oct;41:245–258. [PubMed] [Google Scholar]
  6. Chiu A. Y., Sanes J. R. Development of basal lamina in synaptic and extrasynaptic portions of embryonic rat muscle. Dev Biol. 1984 Jun;103(2):456–467. doi: 10.1016/0012-1606(84)90333-6. [DOI] [PubMed] [Google Scholar]
  7. Christ B., Jacob H. J., Jacob M. Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol (Berl) 1977 Mar 30;150(2):171–186. doi: 10.1007/BF00316649. [DOI] [PubMed] [Google Scholar]
  8. David G., Bernfield M. R. Collagen reduces glycosaminoglycan degradation by cultured mammary epithelial cells: possible mechanism for basal lamina formation. Proc Natl Acad Sci U S A. 1979 Feb;76(2):786–790. doi: 10.1073/pnas.76.2.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Emerman J. T., Pitelka D. R. Maintenance and induction of morphological differentiation in dissociated mammary epithelium on floating collagen membranes. In Vitro. 1977 May;13(5):316–328. doi: 10.1007/BF02616178. [DOI] [PubMed] [Google Scholar]
  10. Fischman D. A. An electron microscope study of myofibril formation in embryonic chick skeletal muscle. J Cell Biol. 1967 Mar;32(3):557–575. doi: 10.1083/jcb.32.3.557. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fitch J. M., Gibney E., Sanderson R. D., Mayne R., Linsenmayer T. F. Domain and basement membrane specificity of a monoclonal antibody against chicken type IV collagen. J Cell Biol. 1982 Nov;95(2 Pt 1):641–647. doi: 10.1083/jcb.95.2.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graham R. C., Jr, Karnovsky M. J. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem. 1966 Apr;14(4):291–302. doi: 10.1177/14.4.291. [DOI] [PubMed] [Google Scholar]
  13. Greenburg G., Hay E. D. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol. 1982 Oct;95(1):333–339. doi: 10.1083/jcb.95.1.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kelly A. M., Zacks S. I. The histogenesis of rat intercostal muscle. J Cell Biol. 1969 Jul;42(1):135–153. doi: 10.1083/jcb.42.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Konigsberg I. R. Diffusion-mediated control of myoblast fusion. Dev Biol. 1971 Sep;26(1):133–152. doi: 10.1016/0012-1606(71)90113-8. [DOI] [PubMed] [Google Scholar]
  16. Kühl U., Ocalan M., Timpl R., Mayne R., Hay E., von der Mark K. Role of muscle fibroblasts in the deposition of type-IV collagen in the basal lamina of myotubes. Differentiation. 1984;28(2):164–172. doi: 10.1111/j.1432-0436.1984.tb00279.x. [DOI] [PubMed] [Google Scholar]
  17. Kühl U., Timpl R., von der Mark K. Synthesis of type IV collagen and laminin in cultures of skeletal muscle cells and their assembly on the surface of myotubes. Dev Biol. 1982 Oct;93(2):344–354. doi: 10.1016/0012-1606(82)90122-1. [DOI] [PubMed] [Google Scholar]
  18. Lipton B. H. A fine-structural analysis of normal and modulated cells in myogenic cultures. Dev Biol. 1977 Oct 1;60(1):26–47. doi: 10.1016/0012-1606(77)90108-7. [DOI] [PubMed] [Google Scholar]
  19. Lipton B. H. Collagen synthesis by normal and bromodeoxyuridine-modulated cells in myogenic culture. Dev Biol. 1977 Dec;61(2):153–165. doi: 10.1016/0012-1606(77)90288-3. [DOI] [PubMed] [Google Scholar]
  20. Mackay B., Harrop T. J., Muir A. R. The fine structure of the muscle tendon junction in the rat. Acta Anat (Basel) 1969;73(4):588–602. doi: 10.1159/000143318. [DOI] [PubMed] [Google Scholar]
  21. Mayne R., Wiedemann H., Irwin M. H., Sanderson R. D., Fitch J. M., Linsenmayer T. F., Kühn K. Monoclonal antibodies against chicken type IV and V collagens: electron microscopic mapping of the epitopes after rotary shadowing. J Cell Biol. 1984 May;98(5):1637–1644. doi: 10.1083/jcb.98.5.1637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Montesano R., Orci L., Vassalli P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol. 1983 Nov;97(5 Pt 1):1648–1652. doi: 10.1083/jcb.97.5.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ontell M. Neonatal muscle: an electron microscopic study. Anat Rec. 1977 Dec;189(4):669–690. doi: 10.1002/ar.1091890410. [DOI] [PubMed] [Google Scholar]
  24. Rodewald R. Distribution of immunoglobulin G receptors in the small intestine of the young rat. J Cell Biol. 1980 Apr;85(1):18–32. doi: 10.1083/jcb.85.1.18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sanes J. R. Laminin, fibronectin, and collagen in synaptic and extrasynaptic portions of muscle fiber basement membrane. J Cell Biol. 1982 May;93(2):442–451. doi: 10.1083/jcb.93.2.442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sanes J. R., Lawrence J. C., Jr Activity-dependent accumulation of basal lamina by cultured rat myotubes. Dev Biol. 1983 May;97(1):123–136. doi: 10.1016/0012-1606(83)90070-2. [DOI] [PubMed] [Google Scholar]
  27. Schor S. L. Cell proliferation and migration on collagen substrata in vitro. J Cell Sci. 1980 Feb;41:159–175. doi: 10.1242/jcs.41.1.159. [DOI] [PubMed] [Google Scholar]
  28. Trotter J. A., Corbett K., Avner B. P. Structure and function of the murine muscle-tendon junction. Anat Rec. 1981 Oct;201(2):293–302. doi: 10.1002/ar.1092010209. [DOI] [PubMed] [Google Scholar]
  29. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES