Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Mar 1;102(3):1067–1073. doi: 10.1083/jcb.102.3.1067

On the surface lattice of microtubules: helix starts, protofilament number, seam, and handedness

PMCID: PMC2114131  PMID: 3949873

Abstract

The tubulin monomers of brain microtubules reassembled in vitro are arranged on a 3-start helix, irrespective of whether the number of protofilaments is 13 or 14. The dimer packing is that of the B-lattice described for flagellar microtubules. This implies that the tubulin core of microtubules contains at least one helical discontinuity. Neither 5-start nor 8-start helices have a physical significance and thus cannot be implicated in models of microtubule elongation, but the structure is compatible with elongation of protofilaments by dimers or protofilamentous oligomers. The inner and outer surfaces of the microtubule wall can be visualized by propane jet freezing, freeze fracturing, and metal replication, at a resolution of at least 4 nm. The 3-start helix is left-handed, in contrast to a previous study based on negative staining and shadowing. The reasons for this discrepancy are discussed.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amos L. A. Arrangement of high molecular weight associated proteins on purified mammalian brain microtubules. J Cell Biol. 1977 Mar;72(3):642–654. doi: 10.1083/jcb.72.3.642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amos L., Klug A. Arrangement of subunits in flagellar microtubules. J Cell Sci. 1974 May;14(3):523–549. doi: 10.1242/jcs.14.3.523. [DOI] [PubMed] [Google Scholar]
  3. Baker T. S., Amos L. A. Structure of the tubulin dimer in zinc-induced sheets. J Mol Biol. 1978 Jul 25;123(1):89–106. doi: 10.1016/0022-2836(78)90378-9. [DOI] [PubMed] [Google Scholar]
  4. Bordas J., Mandelkow E. M., Mandelkow E. Stages of tubulin assembly and disassembly studied by time-resolved synchrotron X-ray scattering. J Mol Biol. 1983 Feb 15;164(1):89–135. doi: 10.1016/0022-2836(83)90089-x. [DOI] [PubMed] [Google Scholar]
  5. Borisy G. G., Marcum J. M., Olmsted J. B., Murphy D. B., Johnson K. A. Purification of tubulin and associated high molecular weight proteins from porcine brain and characterization of microtubule assembly in vitro. Ann N Y Acad Sci. 1975 Jun 30;253:107–132. doi: 10.1111/j.1749-6632.1975.tb19196.x. [DOI] [PubMed] [Google Scholar]
  6. Burton P. R., Himes R. H. Electron microscope studies of pH effects on assembly of tubulin free of associated proteins. Delineation of substructure by tannic acid staining. J Cell Biol. 1978 Apr;77(1):120–133. doi: 10.1083/jcb.77.1.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CASPAR D. L., KLUG A. Physical principles in the construction of regular viruses. Cold Spring Harb Symp Quant Biol. 1962;27:1–24. doi: 10.1101/sqb.1962.027.001.005. [DOI] [PubMed] [Google Scholar]
  8. Chasey D. Left-handed subunit helix in flagellar microtubules. Nature. 1974 Apr 12;248(449):611–612. doi: 10.1038/248611a0. [DOI] [PubMed] [Google Scholar]
  9. Chen Y. D., Hill T. L. Monte Carlo study of the GTP cap in a five-start helix model of a microtubule. Proc Natl Acad Sci U S A. 1985 Feb;82(4):1131–1135. doi: 10.1073/pnas.82.4.1131. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Crepeau R. H., McEwen B., Edelstein S. J. Differences in alpha and beta polypeptide chains of tubulin resolved by electron microscopy with image reconstruction. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5006–5010. doi: 10.1073/pnas.75.10.5006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Erickson H. P. Microtubule surface lattice and subunit structure and observations on reassembly. J Cell Biol. 1974 Jan;60(1):153–167. doi: 10.1083/jcb.60.1.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Evans L., Mitchison T., Kirschner M. Influence of the centrosome on the structure of nucleated microtubules. J Cell Biol. 1985 Apr;100(4):1185–1191. doi: 10.1083/jcb.100.4.1185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Himes R. H., Burton P. R., Gaito J. M. Dimethyl sulfoxide-induced self-assembly of tubulin lacking associated proteins. J Biol Chem. 1977 Sep 10;252(17):6222–6228. [PubMed] [Google Scholar]
  16. Hirokawa N. Cross-linker system between neurofilaments, microtubules, and membranous organelles in frog axons revealed by the quick-freeze, deep-etching method. J Cell Biol. 1982 Jul;94(1):129–142. doi: 10.1083/jcb.94.1.129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kim H., Binder L. I., Rosenbaum J. L. The periodic association of MAP2 with brain microtubules in vitro. J Cell Biol. 1979 Feb;80(2):266–276. doi: 10.1083/jcb.80.2.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Linck R. W., Amos L. A. The hands of helical lattices in flagellar doublet microtubules. J Cell Sci. 1974 May;14(3):551–559. doi: 10.1242/jcs.14.3.551. [DOI] [PubMed] [Google Scholar]
  19. Linck R. W., Langevin G. L. Reassembly of flagellar B (alpha beta) tubulin into singlet microtubules: consequences for cytoplasmic microtubule structure and assembly. J Cell Biol. 1981 May;89(2):323–337. doi: 10.1083/jcb.89.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Linck R. W., Olson G. E., Langevin G. L. Arrangement of tubulin subunits and microtubule-associated proteins in the central-pair microtubule apparatus of squid (Loligo pealei) sperm flagella. J Cell Biol. 1981 May;89(2):309–322. doi: 10.1083/jcb.89.2.309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mandelkow E. M., Mandelkow E. Junctions between microtubule walls. J Mol Biol. 1979 Mar 25;129(1):135–148. doi: 10.1016/0022-2836(79)90064-0. [DOI] [PubMed] [Google Scholar]
  22. Mandelkow E. M., Mandelkow E. Unstained microtubules studied by cryo-electron microscopy. Substructure, supertwist and disassembly. J Mol Biol. 1985 Jan 5;181(1):123–135. doi: 10.1016/0022-2836(85)90330-4. [DOI] [PubMed] [Google Scholar]
  23. Mandelkow E. M., Mandelkow E., Unwin N., Cohen C. Tubulin hoops. Nature. 1977 Feb 17;265(5595):655–657. doi: 10.1038/265655a0. [DOI] [PubMed] [Google Scholar]
  24. Mandelkow E., Schultheiss R., Mandelkow E. M. Assembly and three-dimensional image reconstruction of tubulin hoops. J Mol Biol. 1984 Aug 15;177(3):507–529. doi: 10.1016/0022-2836(84)90297-3. [DOI] [PubMed] [Google Scholar]
  25. Mandelkow E., Thomas J., Cohen C. Microtubule structure at low resolution by x-ray diffraction. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3370–3374. doi: 10.1073/pnas.74.8.3370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. McEwen B., Edelstein S. J. Evidence for a mixed lattice in microtubules reassembled in vitro. J Mol Biol. 1980 May 15;139(2):123–145. doi: 10.1016/0022-2836(80)90300-9. [DOI] [PubMed] [Google Scholar]
  27. Müller M., Meister N., Moor H. Freezing in a propane jet and its application in freeze-fracturing. Mikroskopie. 1980 Sep;36(5-6):129–140. [PubMed] [Google Scholar]
  28. Plattner H., Bachmann L. Cryofixation: a tool in biological ultrastructural research. Int Rev Cytol. 1982;79:237–304. doi: 10.1016/s0074-7696(08)61676-9. [DOI] [PubMed] [Google Scholar]
  29. Scheele R. B., Bergen L. G., Borisy G. G. Control of the structural fidelity of microtubules by initiation sites. J Mol Biol. 1982 Jan 25;154(3):485–500. doi: 10.1016/s0022-2836(82)80008-9. [DOI] [PubMed] [Google Scholar]
  30. Schnapp B. J., Reese T. S. Cytoplasmic structure in rapid-frozen axons. J Cell Biol. 1982 Sep;94(3):667–669. doi: 10.1083/jcb.94.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Schultheiss R., Mandelkow E. Three-dimensional reconstruction of tubulin sheets and re-investigation of microtubule surface lattice. J Mol Biol. 1983 Oct 25;170(2):471–496. doi: 10.1016/s0022-2836(83)80158-2. [DOI] [PubMed] [Google Scholar]
  32. Shelanski M. L., Gaskin F., Cantor C. R. Microtubule assembly in the absence of added nucleotides. Proc Natl Acad Sci U S A. 1973 Mar;70(3):765–768. doi: 10.1073/pnas.70.3.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tilney L. G., Bryan J., Bush D. J., Fujiwara K., Mooseker M. S., Murphy D. B., Snyder D. H. Microtubules: evidence for 13 protofilaments. J Cell Biol. 1973 Nov;59(2 Pt 1):267–275. doi: 10.1083/jcb.59.2.267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weisenberg R. C. Role of co-operative interactions, microtubule-associated proteins and guanosine triphosphate in microtubule assembly: a model. J Mol Biol. 1980 Jun 5;139(4):660–677. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES