Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Mar 1;102(3):688–696. doi: 10.1083/jcb.102.3.688

Disialogangliosides GD2 and GD3 are involved in the attachment of human melanoma and neuroblastoma cells to extracellular matrix proteins

PMCID: PMC2114134  PMID: 3005335

Abstract

Human melanoma cells express relatively large amounts of the disialogangliosides GD3 and GD2 on their surface whereas neuroblastoma cells express GD2 as a major ganglioside. Monoclonal antibodies (Mabs) directed specifically to the carbohydrate moiety of GD3 and GD2 inhibit melanoma and neuroblastoma cell attachment to various substrate adhesive proteins, e.g. collagen, vitronectin, laminin, fibronectin, and a heptapeptide, glycyl-L-arginyl-glycyl-L-aspartyl-L-seryl-L-prolyl- L-cysteine, which constitutes the cell attachment site of fibronectin. Cells that are preattached to a fibronectin substrate can also be induced to detach and round up in the presence of purified anti- ganglioside Mab. Moreover, when melanoma cells that contain both GD2 and GD3 are incubated with Mabs directed to both of these molecules an additive inhibition is observed. The specificity of this inhibition is demonstrated since Mabs of various isotypes directed to either protein or carbohydrate epitopes on a number of other major melanoma or neuroblastoma cell surface antigens have no effect on cell attachment. A study of the kinetics involved in this inhibition indicates that significant effects occur during the first 5 min of cell attachment, suggesting an important role for GD2 and GD3 in the initial events of cell-substrate interactions. The role of gangliosides in cell attachment apparently does not directly involve a strong interaction with fibronectin since we could not observe any binding of radiolabeled fibronectin or fragments of the molecule known to contain the cell attachment site to melanoma gangliosides separated on thin-layer chromatograms. An alternative explanation would be that gangliosides may play a role in the electrostatic requirements for cell-substrate interactions. In this regard, controlled periodate oxidation of terminal, unsubstituted sialic acid residues on the cell surface not only specifically destroys the antigenic epitopes on GD2 and GD3 recognized by specific Mabs but also inhibits melanoma cell and neuroblastoma cell attachment. In fact, the periodate-induced ganglioside oxidation and the inhibition of cell attachment are equally dose dependent. These data suggest that cell-substratum interactions may depend in part on the electrostatic environment provided by terminal sialic acid residues of cell surface gangliosides and possibly other anionic glycoconjugates.

Full Text

The Full Text of this article is available as a PDF (1.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abramson M. B., Yu R. K., Zaby V. Ionic properties of beef brain gangliosides. Biochim Biophys Acta. 1972 Oct 5;280(2):365–372. doi: 10.1016/0005-2760(72)90105-1. [DOI] [PubMed] [Google Scholar]
  2. Aloj S. M., Lee G., Consiglio E., Formisano S., Minton A. P., Kohn L. D. Dansylated thyrotropin as a probe of hormone-receptor interactions. J Biol Chem. 1979 Sep 25;254(18):9030–9039. [PubMed] [Google Scholar]
  3. Blackburn C. C., Schnaar R. L. Carbohydrate-specific cell adhesion is mediated by immobilized glycolipids. J Biol Chem. 1983 Jan 25;258(2):1180–1188. [PubMed] [Google Scholar]
  4. Bremer E. G., Hakomori S., Bowen-Pope D. F., Raines E., Ross R. Ganglioside-mediated modulation of cell growth, growth factor binding, and receptor phosphorylation. J Biol Chem. 1984 Jun 10;259(11):6818–6825. [PubMed] [Google Scholar]
  5. Brown P. J., Juliano R. L. Selective inhibition of fibronectin-mediated cell adhesion by monoclonal antibodies to a cell-surface glycoprotein. Science. 1985 Jun 21;228(4706):1448–1451. doi: 10.1126/science.4012302. [DOI] [PubMed] [Google Scholar]
  6. Chapman A. E. Characterization of a 140Kd cell surface glycoprotein involved in myoblast adhesion. J Cell Biochem. 1984;25(2):109–121. doi: 10.1002/jcb.240250206. [DOI] [PubMed] [Google Scholar]
  7. Cheresh D. A., Harper J. R., Schulz G., Reisfeld R. A. Localization of the gangliosides GD2 and GD3 in adhesion plaques and on the surface of human melanoma cells. Proc Natl Acad Sci U S A. 1984 Sep;81(18):5767–5771. doi: 10.1073/pnas.81.18.5767. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cheresh D. A., Reisfeld R. A., Varki A. P. O-acetylation of disialoganglioside GD3 by human melanoma cells creates a unique antigenic determinant. Science. 1984 Aug 24;225(4664):844–846. doi: 10.1126/science.6206564. [DOI] [PubMed] [Google Scholar]
  9. Cheresh D. A., Varki A. P., Varki N. M., Stallcup W. B., Levine J., Reisfeld R. A. A monoclonal antibody recognizes an O-acylated sialic acid in a human melanoma-associated ganglioside. J Biol Chem. 1984 Jun 25;259(12):7453–7459. [PubMed] [Google Scholar]
  10. Dippold W. G., Knuth A., Meyer zum Büschenfelde K. H. Inhibition of human melanoma cell growth in vitro by monoclonal anti-GD3-ganglioside antibody. Cancer Res. 1984 Feb;44(2):806–810. [PubMed] [Google Scholar]
  11. Fishman P. H. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69(2):85–97. doi: 10.1007/BF01872268. [DOI] [PubMed] [Google Scholar]
  12. Giancotti F. G., Tarone G., Knudsen K., Damsky C., Comoglio P. M. Cleavage of a 135 kD cell surface glycoprotein correlates with loss of fibroblast adhesion to fibronectin. Exp Cell Res. 1985 Jan;156(1):182–190. doi: 10.1016/0014-4827(85)90272-1. [DOI] [PubMed] [Google Scholar]
  13. Goldenring J. R., Otis L. C., Yu R. K., DeLorenzo R. J. Calcium/ganglioside-dependent protein kinase activity in rat brain membrane. J Neurochem. 1985 Apr;44(4):1229–1234. doi: 10.1111/j.1471-4159.1985.tb08748.x. [DOI] [PubMed] [Google Scholar]
  14. Hakomori S., Kannagi R. Glycosphingolipids as tumor-associated and differentiation markers. J Natl Cancer Inst. 1983 Aug;71(2):231–251. [PubMed] [Google Scholar]
  15. Harper J. R., Bumol T. F., Reisfeld R. A. Characterization of monoclonal antibody 155.8 and partial characterization of its proteoglycan antigen on human melanoma cells. J Immunol. 1984 Apr;132(4):2096–2104. [PubMed] [Google Scholar]
  16. Hayman E. G., Pierschbacher M. D., Ohgren Y., Ruoslahti E. Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Natl Acad Sci U S A. 1983 Jul;80(13):4003–4007. doi: 10.1073/pnas.80.13.4003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ilyas A. A., Quarles R. H., MacIntosh T. D., Dobersen M. J., Trapp B. D., Dalakas M. C., Brady R. O. IgM in a human neuropathy related to paraproteinemia binds to a carbohydrate determinant in the myelin-associated glycoprotein and to a ganglioside. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1225–1229. doi: 10.1073/pnas.81.4.1225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Jaques L. W., Brown E. B., Barrett J. M., Brey WS Jr Weltner W., Jr Sialic acid. A calcium-binding carbohydrate. J Biol Chem. 1977 Jul 10;252(13):4533–4538. [PubMed] [Google Scholar]
  19. Kinders R. J., Rintoul D. A., Johnson T. C. Ganglioside GM1 sensitizes tumor cells to growth inhibitory glycopeptides. Biochem Biophys Res Commun. 1982 Jul 30;107(2):663–669. doi: 10.1016/0006-291x(82)91542-x. [DOI] [PubMed] [Google Scholar]
  20. Kleinman H. K., Martin G. R., Fishman P. H. Ganglioside inhibition of fibronectin-mediated cell adhesion to collagen. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3367–3371. doi: 10.1073/pnas.76.7.3367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lingwood C. A., Hakomori S. Selective inhibition of cell growth and associated changes in glycolipid metabolism induced by monovalent antibodies to glycolipids. Exp Cell Res. 1977 Sep;108(2):385–391. doi: 10.1016/s0014-4827(77)80045-1. [DOI] [PubMed] [Google Scholar]
  22. Lingwood C. A., Ng A., Hakomori S. Monovalent antibodies directed to transformation-sensitive membrane components inhibit the process of viral transformation. Proc Natl Acad Sci U S A. 1978 Dec;75(12):6049–6053. doi: 10.1073/pnas.75.12.6049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Magnani J. L., Nilsson B., Brockhaus M., Zopf D., Steplewski Z., Koprowski H., Ginsburg V. A monoclonal antibody-defined antigen associated with gastrointestinal cancer is a ganglioside containing sialylated lacto-N-fucopentaose II. J Biol Chem. 1982 Dec 10;257(23):14365–14369. [PubMed] [Google Scholar]
  24. Markwell M. A., Svennerholm L., Paulson J. C. Specific gangliosides function as host cell receptors for Sendai virus. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5406–5410. doi: 10.1073/pnas.78.9.5406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nudelman E., Hakomori S., Kannagi R., Levery S., Yeh M. Y., Hellström K. E., Hellström I. Characterization of a human melanoma-associated ganglioside antigen defined by a monoclonal antibody, 4.2. J Biol Chem. 1982 Nov 10;257(21):12752–12756. [PubMed] [Google Scholar]
  26. Okada Y., Matsuura H., Hakomori S. Inhibition of tumor cell growth by aggregation of a tumor-associated glycolipid antigen: a close functional association between gangliotriaosylceramide and transferrin receptor in mouse lymphoma L-5178Y. Cancer Res. 1985 Jun;45(6):2793–2801. [PubMed] [Google Scholar]
  27. Okada Y., Mugnai G., Bremer E. G., Hakomori S. Glycosphingolipids in detergent-insoluble substrate attachment matrix (DISAM) prepared from substrate attachment material (SAM). Their possible role in regulating cell adhesion. Exp Cell Res. 1984 Dec;155(2):448–456. doi: 10.1016/0014-4827(84)90205-2. [DOI] [PubMed] [Google Scholar]
  28. Oppenheimer-Marks N., Grinnell F. Calcium ions protect cell-substratum adhesion receptors against proteolysis. Evidence from immunoabsorption and electroblotting studies. Exp Cell Res. 1984 Jun;152(2):467–475. doi: 10.1016/0014-4827(84)90648-7. [DOI] [PubMed] [Google Scholar]
  29. Parham P., Barnstable C. J., Bodmer W. F. Use of a monoclonal antibody (W6/32) in structural studies of HLA-A,B,C, antigens. J Immunol. 1979 Jul;123(1):342–349. [PubMed] [Google Scholar]
  30. Parker P. J., Young S., Gullick W. J., Mayes E. L., Bennett P., Waterfield M. D. Monoclonal antibodies against the human epidermal growth factor receptor from A431 cells. Isolation, characterization, and use in the purification of active epidermal growth factor receptor. J Biol Chem. 1984 Aug 10;259(15):9906–9912. [PubMed] [Google Scholar]
  31. Pierschbacher M. D., Hayman E. G., Ruoslahti E. Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 1981 Oct;26(2 Pt 2):259–267. doi: 10.1016/0092-8674(81)90308-1. [DOI] [PubMed] [Google Scholar]
  32. Pierschbacher M. D., Ruoslahti E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature. 1984 May 3;309(5963):30–33. doi: 10.1038/309030a0. [DOI] [PubMed] [Google Scholar]
  33. Pierschbacher M. D., Ruoslahti E. Variants of the cell recognition site of fibronectin that retain attachment-promoting activity. Proc Natl Acad Sci U S A. 1984 Oct;81(19):5985–5988. doi: 10.1073/pnas.81.19.5985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pytela R., Pierschbacher M. D., Ruoslahti E. Identification and isolation of a 140 kd cell surface glycoprotein with properties expected of a fibronectin receptor. Cell. 1985 Jan;40(1):191–198. doi: 10.1016/0092-8674(85)90322-8. [DOI] [PubMed] [Google Scholar]
  35. Rao N. C., Barsky S. H., Terranova V. P., Liotta L. A. Isolation of a tumor cell laminin receptor. Biochem Biophys Res Commun. 1983 Mar 29;111(3):804–808. doi: 10.1016/0006-291x(83)91370-0. [DOI] [PubMed] [Google Scholar]
  36. SVENNERHOLM L. CHROMATOGRAPHIC SEPARATION OF HUMAN BRAIN GANGLIOSIDES. J Neurochem. 1963 Sep;10:613–623. doi: 10.1111/j.1471-4159.1963.tb08933.x. [DOI] [PubMed] [Google Scholar]
  37. Saito M., Yu R. K., Cheung N. K. Ganglioside GD2 specificity of monoclonal antibodies to human neuroblastoma cell. Biochem Biophys Res Commun. 1985 Feb 28;127(1):1–7. doi: 10.1016/s0006-291x(85)80117-0. [DOI] [PubMed] [Google Scholar]
  38. Schulz G., Cheresh D. A., Varki N. M., Yu A., Staffileno L. K., Reisfeld R. A. Detection of ganglioside GD2 in tumor tissues and sera of neuroblastoma patients. Cancer Res. 1984 Dec;44(12 Pt 1):5914–5920. [PubMed] [Google Scholar]
  39. Spiegel S., Schlessinger J., Fishman P. H. Incorporation of fluorescent gangliosides into human fibroblasts: mobility, fate, and interaction with fibronectin. J Cell Biol. 1984 Aug;99(2):699–704. doi: 10.1083/jcb.99.2.699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Tai T., Paulson J. C., Cahan L. D., Irie R. F. Ganglioside GM2 as a human tumor antigen (OFA-I-1). Proc Natl Acad Sci U S A. 1983 Sep;80(17):5392–5396. doi: 10.1073/pnas.80.17.5392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Takeichi M. Functional correlation between cell adhesive properties and some cell surface proteins. J Cell Biol. 1977 Nov;75(2 Pt 1):464–474. doi: 10.1083/jcb.75.2.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tarone G., Galetto G., Prat M., Comoglio P. M. Cell surface molecules and fibronectin-mediated cell adhesion: effect of proteolytic digestion of membrane proteins. J Cell Biol. 1982 Jul;94(1):179–186. doi: 10.1083/jcb.94.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Van Lenten L., Ashwell G. Studies on the chemical and enzymatic modification of glycoproteins. A general method for the tritiation of sialic acid-containing glycoproteins. J Biol Chem. 1971 Mar 25;246(6):1889–1894. [PubMed] [Google Scholar]
  44. Varki N. M., Reisfeld R. A., Walker L. E. Antigens associated with a human lung adenocarcinoma defined by monoclonal antibodies. Cancer Res. 1984 Feb;44(2):681–687. [PubMed] [Google Scholar]
  45. Wormsley S. B., Collins M. L., Royston I. Comparative density of the human T-cell antigen T65 on normal peripheral blood T cells and chronic lymphocytic leukemia cells. Blood. 1981 Apr;57(4):657–662. [PubMed] [Google Scholar]
  46. Yamada K. M., Critchley D. R., Fishman P. H., Moss J. Exogenous gangliosides enhance the interaction of fibronectin with ganglioside-deficient cells. Exp Cell Res. 1983 Feb;143(2):295–302. doi: 10.1016/0014-4827(83)90054-x. [DOI] [PubMed] [Google Scholar]
  47. Yamada K. M., Kennedy D. W., Grotendorst G. R., Momoi T. Glycolipids: receptors for fibronectin? J Cell Physiol. 1981 Nov;109(2):343–351. doi: 10.1002/jcp.1041090218. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES