Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Apr 1;102(4):1419–1429. doi: 10.1083/jcb.102.4.1419

Trichohyalin, an intermediate filament-associated protein of the hair follicle

PMCID: PMC2114164  PMID: 3958055

Abstract

A precursor protein associated with the formation of the citrulline- containing intermediate filaments of the hair follicle has been isolated and characterized. The protein, with a molecular weight of 190,000, was isolated from sheep wool follicles and purified until it yielded a single band on a SDS polyacrylamide gel. The Mr 190,000 protein has a high content of lysine and glutamic acid/glutamine residues and is rich in arginine residues, some of which, it is postulated, undergo a side chain conversion in situ into citrulline residues. Polyclonal antibodies were raised to the purified protein, and these cross-react with similar proteins from extracts of guinea pig and human follicles and rat vibrissae inner root sheaths. Tissue immunochemical methods have localized the Mr 190,000 protein to the trichohyalin granules of the developing inner root sheath of the wool follicle. We propose that the old term trichohyalin be retained to describe this Mr 190,000 protein. Immunoelectron microscopy has located the Mr 190,000 protein to the trichohyalin granules but not to the newly synthesized filaments. This technique has revealed that trichohyalin becomes associated with the filaments at later stages of development. These results indicate a possible matrix role for trichohyalin.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BIRBECK M. S., MERCER E. H. The electron microscopy of the human hair follicle. III. The inner root sheath and trichohyaline. J Biophys Biochem Cytol. 1957 Mar 25;3(2):223–230. doi: 10.1083/jcb.3.2.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bitte L., Kabat D. Isotopic labeling and analysis of phosphoproteins from mammalian ribosomes. Methods Enzymol. 1974;30:563–590. doi: 10.1016/0076-6879(74)30056-0. [DOI] [PubMed] [Google Scholar]
  3. Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
  4. Buxman M. M., Wuepper K. D. Cellular localization of epidermal transglutaminase: a histochemical and immunochemical study. J Histochem Cytochem. 1978 May;26(5):340–348. doi: 10.1177/26.5.77870. [DOI] [PubMed] [Google Scholar]
  5. Clarke R. M., Rogers G. E. Protein synthesis in the hair follicle. I. Extraction and partial characterization of follicle proteins. J Invest Dermatol. 1970 Dec;55(6):419–424. doi: 10.1111/1523-1747.ep12260560. [DOI] [PubMed] [Google Scholar]
  6. Dale B. A., Holbrook K. A., Steinert P. M. Assembly of stratum corneum basic protein and keratin filaments in macrofibrils. Nature. 1978 Dec 14;276(5689):729–731. doi: 10.1038/276729a0. [DOI] [PubMed] [Google Scholar]
  7. Dale B. A., Ling S. Y. Evidence of a precursor form of stratum corneum basic protein in rat epidermis. Biochemistry. 1979 Aug 7;18(16):3539–3546. doi: 10.1021/bi00583a016. [DOI] [PubMed] [Google Scholar]
  8. Dale B. A., Ling S. Y. Immunologic cross-reaction of stratum corneum basic protein and a keratohyalin granule protein. J Invest Dermatol. 1979 May;72(5):257–261. doi: 10.1111/1523-1747.ep12531715. [DOI] [PubMed] [Google Scholar]
  9. Gemmell R. T., Chapman R. E. Formation and breakdown of the inner root sheath and features of the pilary canal epithelium in the wool follicle. J Ultrastruct Res. 1971 Aug;36(3):355–366. doi: 10.1016/s0022-5320(71)80109-0. [DOI] [PubMed] [Google Scholar]
  10. Gilmartin M. E., Culbertson V. B., Freedberg I. M. Phosphorylation of epidermal keratins. J Invest Dermatol. 1980 Sep;75(3):211–216. doi: 10.1111/1523-1747.ep12522887. [DOI] [PubMed] [Google Scholar]
  11. Hansen J. N., Pheiffer B. H., Boehnert J. A. Chemical and electrophoretic properties of solubilizable disulfide gels. Anal Biochem. 1980 Jun;105(1):192–201. doi: 10.1016/0003-2697(80)90445-5. [DOI] [PubMed] [Google Scholar]
  12. Harding C. R., Scott I. R. Histidine-rich proteins (filaggrins): structural and functional heterogeneity during epidermal differentiation. J Mol Biol. 1983 Nov 5;170(3):651–673. doi: 10.1016/s0022-2836(83)80126-0. [DOI] [PubMed] [Google Scholar]
  13. Harding H. W., Rogers G. E. Epsilon-(gamma-glutamyl)lysine cross-linkage in citrulline-containing protein fractions from hair. Biochemistry. 1971 Feb 16;10(4):624–630. doi: 10.1021/bi00780a013. [DOI] [PubMed] [Google Scholar]
  14. Hjelm H., Hjelm K., Sjöquist J. Protein A from Staphylococcus aureus. Its isolation by affinity chromatography and its use as an immunosorbent for isolation of immunoglobulins. FEBS Lett. 1972 Nov 15;28(1):73–76. doi: 10.1016/0014-5793(72)80680-x. [DOI] [PubMed] [Google Scholar]
  15. Hurley C. K. Electrophoresis of histones: a modified Panyim and Chalkley system for slab gels. Anal Biochem. 1977 Jun;80(2):624–626. doi: 10.1016/0003-2697(77)90687-x. [DOI] [PubMed] [Google Scholar]
  16. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  17. Lonsdale-Eccles J. D., Haugen J. A., Dale B. A. A phosphorylated keratohyalin-derived precursor of epidermal stratum corneum basic protein. J Biol Chem. 1980 Mar 25;255(6):2235–2238. [PubMed] [Google Scholar]
  18. Lonsdale-Eccles J. D., Resing K. A., Meek R. L., Dale B. A. High-molecular-weight precursor of epidermal filaggrin and hypothesis for its tandem repeating structure. Biochemistry. 1984 Mar 13;23(6):1239–1245. doi: 10.1021/bi00301a034. [DOI] [PubMed] [Google Scholar]
  19. PARAKKAL P. F., MATOLTSY A. G. A STUDY OF THE DIFFERENTIATION PRODUCTS OF THE HAIR FOLLICLE CELLS WITH THE ELECTRON MICROSCOPE. J Invest Dermatol. 1964 Jul;42:23–34. [PubMed] [Google Scholar]
  20. Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
  21. ROGERS G. E. ISOLATION AND PROPERTIES OF INNER SHEATH CELLS OF HAIR FOLLICLES. Exp Cell Res. 1964 Jan;33:264–276. doi: 10.1016/s0014-4827(64)81032-6. [DOI] [PubMed] [Google Scholar]
  22. ROGERS G. E. Occurrence of citrulline in proteins. Nature. 1962 Jun 23;194:1149–1151. doi: 10.1038/1941149a0. [DOI] [PubMed] [Google Scholar]
  23. ROGERS G. E. Some aspects of the structure of the inner root sheath of hair follicles revealed by light and electron microscopy. Exp Cell Res. 1958 Apr;14(2):378–387. doi: 10.1016/0014-4827(58)90195-2. [DOI] [PubMed] [Google Scholar]
  24. ROGERS G. E. Some observations on the proteins of the inner root sheath cells of hair follicles. Biochim Biophys Acta. 1958 Jul;29(1):33–43. doi: 10.1016/0006-3002(58)90143-4. [DOI] [PubMed] [Google Scholar]
  25. Ramsden M., Loehren D., Balmain A. Identification of a rapidly labelled 350K histidine-rich protein in neonatal mouse epidermis. Differentiation. 1983;23(3):243–249. doi: 10.1111/j.1432-0436.1982.tb01289.x. [DOI] [PubMed] [Google Scholar]
  26. Rogers G. E., Harding H. W., Llewellyn-Smith I. J. The origin of citrulline-containing proteins in the hair follicle and the chemical nature of trichohyalin, an intracellular precursor. Biochim Biophys Acta. 1977 Nov 25;495(1):159–175. doi: 10.1016/0005-2795(77)90250-1. [DOI] [PubMed] [Google Scholar]
  27. Scott I. R., Harding C. R. Studies on the synthesis and degradation of a high molecular weight, histidine-rich phosphoprotein from mammalian epidermis. Biochim Biophys Acta. 1981 Jun 29;669(1):65–78. doi: 10.1016/0005-2795(81)90224-5. [DOI] [PubMed] [Google Scholar]
  28. Steinert P. M., Cantieri J. S., Teller D. C., Lonsdale-Eccles J. D., Dale B. A. Characterization of a class of cationic proteins that specifically interact with intermediate filaments. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4097–4101. doi: 10.1073/pnas.78.7.4097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Steinert P. M., Dyer P. Y., Rogers G. E. The isolation of non-keratin protein filaments from inner root sheath cells of the hair follicle. J Invest Dermatol. 1971 Jan;56(1):49–54. doi: 10.1111/1523-1747.ep12291902. [DOI] [PubMed] [Google Scholar]
  30. Steinert P. M., Harding H. W., Rogers G. E. The characterisation of protein-bound citrulline. Biochim Biophys Acta. 1969 Feb 4;175(1):1–9. doi: 10.1016/0005-2795(69)90138-x. [DOI] [PubMed] [Google Scholar]
  31. Steinert P. M. Structural features of the alpha-type filaments of the inner root sheath cells of the guinea pig hair follicle. Biochemistry. 1978 Nov 14;17(23):5045–5052. doi: 10.1021/bi00616a029. [DOI] [PubMed] [Google Scholar]
  32. Sumner J. B. A METHOD FOR THE COLORIMETRIC DETERMINATION OF PHOSPHORUS. Science. 1944 Nov 3;100(2601):413–414. doi: 10.1126/science.100.2601.413. [DOI] [PubMed] [Google Scholar]
  33. Swank R. T., Munkres K. D. Molecular weight analysis of oligopeptides by electrophoresis in polyacrylamide gel with sodium dodecyl sulfate. Anal Biochem. 1971 Feb;39(2):462–477. doi: 10.1016/0003-2697(71)90436-2. [DOI] [PubMed] [Google Scholar]
  34. Ugel A. R., Chrambach A., Rodbard D. Fractionation and characterization of an oligomeric series of bovine keratohyalin by polyacrylamide gel electrophoresis. Anal Biochem. 1971 Oct;43(2):410–426. doi: 10.1016/0003-2697(71)90271-5. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES