Abstract
KNRK cells (a normal rat kidney [NRK] cell line transformed by Kirsten murine sarcoma virus) in sparse culture exhibit a highly ruffled morphology, but the cause of this ruffling is unknown. In this study, we have demonstrated that the continuous, excess ruffling on KNRK cells is caused by one or more soluble agents secreted by the KNRK cells themselves. To do this study, an assay for ruffling responses in live cell cultures was defined, and its reproducibility was demonstrated. This assay permitted observation of the kinetics of ruffling responses (percentage of cells ruffled as a function of time after stimulation). This method was used to compare the kinetics of ruffling induced by insulin, epidermal growth factor, fibroblast growth factor, glucose, and KNRK cell conditioned medium (CM). Ruffling was elicited on NRK cells by each of the polypeptide mitogens and nutrients, but, in each case, this ruffling subsided spontaneously within an hour. CM from KNRK cells also caused ruffling movements on untransformed NRK cells, but this ruffling continued for at least 20 h. This response was largely blocked by premixing the KNRK cell CM with rabbit IgG against rat transforming growth factor, type alpha, (TGF-alpha). KNRK cells made quiescent (ruffle free) by a pH shift (from 7.4 to 8.4) responded to insulin, glucose, and KNRK cell CM with kinetics similar to those observed for each of these factors in NRK cells. The unusual feature for the ruffle-inducing agent(s) produced by KNRK cells was that this activity was not subject, in either NRK or KNRK cells, to the cellular off-regulation that limits the responses to insulin or glucose. Thus, the continuous ruffling of KNRK cells is caused by their own unregulated ruffle-inducing agent or agents, which appear to include TGF-alpha. This work also demonstrates that kinetic analysis of cellular responses to exogenous factors can provide new insights into the regulatory mechanisms involved in the normal limitation of these responses.
Full Text
The Full Text of this article is available as a PDF (700.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ambros V. R., Chen L. B., Buchanan J. M. Surface ruffles as markers for studies of cell transformation by Rous sarcoma virus. Proc Natl Acad Sci U S A. 1975 Aug;72(8):3144–3148. doi: 10.1073/pnas.72.8.3144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arsenis G., Hayes G. R., Livingston J. N. Insulin receptor cycling and insulin action in the rat adipocyte. J Biol Chem. 1985 Feb 25;260(4):2202–2207. [PubMed] [Google Scholar]
- Assoian R. K., Frolik C. A., Roberts A. B., Miller D. M., Sporn M. B. Transforming growth factor-beta controls receptor levels for epidermal growth factor in NRK fibroblasts. Cell. 1984 Jan;36(1):35–41. doi: 10.1016/0092-8674(84)90071-0. [DOI] [PubMed] [Google Scholar]
- Bissell M. J. Transport as a rate limiting step in glucose metabolism in virus-transformed cells: studies with cytochalasin B. J Cell Physiol. 1976 Dec;89(4):701–709. doi: 10.1002/jcp.1040890430. [DOI] [PubMed] [Google Scholar]
- Bowen-Pope D. F., Vogel A., Ross R. Production of platelet-derived growth factor-like molecules and reduced expression of platelet-derived growth factor receptors accompany transformation by a wide spectrum of agents. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2396–2400. doi: 10.1073/pnas.81.8.2396. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brunk U., Schellens J., Westermark B. Influence of epidermal growth factor (EGF) on ruffling activity, pinocytosis and proliferation of cultivated human glia cells. Exp Cell Res. 1976 Dec;103(2):295–302. doi: 10.1016/0014-4827(76)90266-4. [DOI] [PubMed] [Google Scholar]
- Connolly J. L., Green S. A., Greene L. A. Comparison of rapid changes in surface morphology and coated pit formation of PC12 cells in response to nerve growth factor, epidermal growth factor, and dibutyryl cyclic AMP. J Cell Biol. 1984 Feb;98(2):457–465. doi: 10.1083/jcb.98.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cushman S. W., Wardzala L. J., Simpson I. A., Karnieli E., Hissin P. J., Wheeler T. J., Hinkle P. C., Salans L. B. Insulin-induced translocation of intracellular glucose transporters in the isolated rat adipose cell. Fed Proc. 1984 May 15;43(8):2251–2255. [PubMed] [Google Scholar]
- Devouge M. W., Mukherjee B. B., Pena S. D. Kirsten murine sarcoma virus-coded p21ras may act on multiple targets to effect pleiotropic changes in transformed cells. Virology. 1982 Sep;121(2):327–344. doi: 10.1016/0042-6822(82)90172-6. [DOI] [PubMed] [Google Scholar]
- Gorga J. C., Lienhard G. E. One transporter per vesicle: determination of the basis of the insulin effect on glucose transport. Fed Proc. 1984 May 15;43(8):2237–2241. [PubMed] [Google Scholar]
- Goshima K., Masuda A., Owaribe K. Insulin-induced formation of ruffling membranes of KB cells and its correlation with enhancement of amino acid transport. J Cell Biol. 1984 Mar;98(3):801–809. doi: 10.1083/jcb.98.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haigler H. T., McKanna J. A., Cohen S. Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J Cell Biol. 1979 Oct;83(1):82–90. doi: 10.1083/jcb.83.1.82. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hatanaka M. Transport of sugars in tumor cell membranes. Biochim Biophys Acta. 1974 Apr 29;355(1):77–104. doi: 10.1016/0304-419x(74)90008-0. [DOI] [PubMed] [Google Scholar]
- Heine U. I., Keski-Oja J., Wetzel B. Rapid membrane changes in mouse epithelial cells after exposure to epidermal growth factor. J Ultrastruct Res. 1981 Dec;77(3):335–343. doi: 10.1016/s0022-5320(81)80029-9. [DOI] [PubMed] [Google Scholar]
- Huu Duc-Nguyen, Rosenblum E. N., Zeigel R. F. Persistent infection of a rat kidney cell line with Rauscher murine leukemia virus. J Bacteriol. 1966 Oct;92(4):1133–1140. doi: 10.1128/jb.92.4.1133-1140.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kono T. Translocation hypothesis of insulin action on glucose transport. Fed Proc. 1984 May 15;43(8):2256–2257. [PubMed] [Google Scholar]
- Linsley P. S., Hargreaves W. R., Twardzik D. R., Todaro G. J. Detection of larger polypeptides structurally and functionally related to type I transforming growth factor. Proc Natl Acad Sci U S A. 1985 Jan;82(2):356–360. doi: 10.1073/pnas.82.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malick L. E., Langenbach R. Scanning electron microscopy of in vitro chemically transformed mouse embryo cells. J Cell Biol. 1976 Mar;68(3):654–664. doi: 10.1083/jcb.68.3.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozanne B., Fulton R. J., Kaplan P. L. Kirsten murine sarcoma virus transformed cell lines and a spontaneously transformed rat cell-line produce transforming factors. J Cell Physiol. 1980 Oct;105(1):163–180. doi: 10.1002/jcp.1041050118. [DOI] [PubMed] [Google Scholar]
- Porter K. R., Todaro G. J., Fonte V. A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse Balb-3T3 cells. J Cell Biol. 1973 Dec;59(3):633–642. doi: 10.1083/jcb.59.3.633. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rothenberg P., Glaser L., Schlesinger P., Cassel D. Activation of Na+/H+ exchange by epidermal growth factor elevates intracellular pH in A431 cells. J Biol Chem. 1983 Oct 25;258(20):12644–12653. [PubMed] [Google Scholar]
- Rothenberg P., Reuss L., Glaser L. Serum and epidermal growth factor transiently depolarize quiescent BSC-1 epithelial cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7783–7787. doi: 10.1073/pnas.79.24.7783. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roy-Burman P., Klement V. Derivation of mouse sarcoma virus (Kirsten) by acquisition of genes from heterologous host. J Gen Virol. 1975 Aug;28(2):193–198. doi: 10.1099/0022-1317-28-2-193. [DOI] [PubMed] [Google Scholar]
- Royer-Pokora B., Beug H., Claviez M., Winkhardt H. J., Friis R. R., Graf T. Transformation parameters in chicken fibroblasts transformed by AEV and MC29 avian leukemia viruses. Cell. 1978 Apr;13(4):751–760. doi: 10.1016/0092-8674(78)90225-8. [DOI] [PubMed] [Google Scholar]
- Salter D. W., Weber M. J. Glucose-specific cytochalasin B binding is increased in chicken embryo fibroblasts transformed by Rous sarcoma virus. J Biol Chem. 1979 May 10;254(9):3554–3561. [PubMed] [Google Scholar]
- Sawyer S. T., Cohen S. Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells. Biochemistry. 1981 Oct 13;20(21):6280–6286. doi: 10.1021/bi00524a057. [DOI] [PubMed] [Google Scholar]
- Schmidt R. A., Glomset J. A., Wight T. N., Habenicht A. J., Ross R. A study of the Influence of mevalonic acid and its metabolites on the morphology of swiss 3T3 cells. J Cell Biol. 1982 Oct;95(1):144–153. doi: 10.1083/jcb.95.1.144. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sporn M. B., Todaro G. J. Autocrine secretion and malignant transformation of cells. N Engl J Med. 1980 Oct 9;303(15):878–880. doi: 10.1056/NEJM198010093031511. [DOI] [PubMed] [Google Scholar]
- Todaro G. J., De Larco J. E. Growth factors produced by sarcoma virus-transformed cells. Cancer Res. 1978 Nov;38(11 Pt 2):4147–4154. [PubMed] [Google Scholar]
- Weber M. J. Hexose transport in normal and in Rous sarcoma virus-transformed cells. J Biol Chem. 1973 May 10;248(9):2978–2983. [PubMed] [Google Scholar]
- Weber M. J., Nakamura K. D., Salter D. W. Molecular events leading to enhanced glucose transport in Rous sarcoma virus-transformed cells. Fed Proc. 1984 May 15;43(8):2246–2250. [PubMed] [Google Scholar]
- Wiley H. S., Cunningham D. D. Epidermal growth factor stimulates fluid phase endocytosis in human fibroblasts through a signal generated at the cell surface. J Cell Biochem. 1982;19(4):383–394. doi: 10.1002/jcb.240190407. [DOI] [PubMed] [Google Scholar]
