Abstract
The mode of transport of ceruloplasmin (CP) into the liver was investigated in fractionated liver cell suspensions. Incubation of 125I- CP at 4 degrees C with these different fractions led to its binding only to endothelial cells but not Kupffer cells and hepatocytes. Incubation at 37 degrees C led to rapid uptake of 125I-CP by endothelium, but cell-associated radioactivity declined after 15 min, which suggests the release of the labeled substance. Internalization was confirmed by fractionation of surface-bound and internalized ligand. The released label now acquired binding potential for fresh target hepatocytes, and the binding was inhibitable with asialoceruloplasmin but not native CP. This suggested that the released molecule was modified in the endothelium by desialation. Desialation was confirmed by incubation of endothelium with double-labeled CP (3H label on sialic acid and 125I on the protein part). We conclude that in the liver, CP is first recognized and taken up by endothelial cells that are endowed with appropriate surface receptors for the protein. Endothelium then modifies the molecule by desialation to expose the penultimate galactosyl residues. The modified molecule is then released, recognized, and taken up by hepatocytes through their membrane galactosyl-recognition system. These findings are consistent with the role of endothelium as an active mediator of molecular transport between blood and tissue, and further assign a biological role for the galactosyl-recognition system in hepatocytes.
Full Text
The Full Text of this article is available as a PDF (621.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AISEN P., MORELL A. G., ALPERT S., STERNLIEB I. BILIARY EXCRETION FOF CAERULOPLASMIN COPPER. Nature. 1964 Aug 22;203:873–874. doi: 10.1038/203873a0. [DOI] [PubMed] [Google Scholar]
- Ashwell G., Morell A. G. The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins. Adv Enzymol Relat Areas Mol Biol. 1974;41(0):99–128. doi: 10.1002/9780470122860.ch3. [DOI] [PubMed] [Google Scholar]
- Bolton A. E., Hunter W. M. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J. 1973 Jul;133(3):529–539. doi: 10.1042/bj1330529. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DYER J. R. Use of periodate oxidations in biochemical analysis. Methods Biochem Anal. 1956;3:111–152. doi: 10.1002/9780470110195.ch5. [DOI] [PubMed] [Google Scholar]
- David G. S. Solid state lactoperoxidase: a highly stable enzyme for simple, gentle iodination of proteins. Biochem Biophys Res Commun. 1972 Jul 25;48(2):464–471. doi: 10.1016/s0006-291x(72)80074-3. [DOI] [PubMed] [Google Scholar]
- Greenspan P., St Clair R. W. Retroendocytosis of low density lipoprotein. Effect of lysosomal inhibitors on the release of undegraded 125I-low density lipoprotein of altered composition from skin fibroblasts in culture. J Biol Chem. 1984 Feb 10;259(3):1703–1713. [PubMed] [Google Scholar]
- Haigler H. T., Maxfield F. R., Willingham M. C., Pastan I. Dansylcadaverine inhibits internalization of 125I-epidermal growth factor in BALB 3T3 cells. J Biol Chem. 1980 Feb 25;255(4):1239–1241. [PubMed] [Google Scholar]
- Kataoka M., Tavassoli M. Ceruloplasmin receptors in liver cell suspensions are limited to the endothelium. Exp Cell Res. 1984 Nov;155(1):232–240. doi: 10.1016/0014-4827(84)90784-5. [DOI] [PubMed] [Google Scholar]
- Kataoka M., Tavassoli M. Synthetic neoglycoproteins: a class of regents for detection of sugar-recognizing substances. J Histochem Cytochem. 1984 Oct;32(10):1091–1098. doi: 10.1177/32.10.6434628. [DOI] [PubMed] [Google Scholar]
- Kataoka M., Tavassoli M. The role of liver endothelium in the binding and uptake of ceruloplasmin: studies with colloidal gold probe. J Ultrastruct Res. 1985 Feb;90(2):194–202. doi: 10.1016/0889-1605(85)90109-0. [DOI] [PubMed] [Google Scholar]
- Kolb-Bachofen V. Hepatic receptor for asialo-glycoproteins. Ultrastructural demonstration of ligand-induced microaggregation of receptors. Biochim Biophys Acta. 1981 Jul 20;645(2):293–299. doi: 10.1016/0005-2736(81)90200-5. [DOI] [PubMed] [Google Scholar]
- Moguilevsky N., Retegui L. A., Courtoy P. J., Castracane C. E., Masson P. L. Uptake of lactoferrin by the liver. III. Critical role of the protein moiety. Lab Invest. 1984 Mar;50(3):335–340. [PubMed] [Google Scholar]
- Morell A. G., Gregoriadis G., Scheinberg I. H., Hickman J., Ashwell G. The role of sialic acid in determining the survival of glycoproteins in the circulation. J Biol Chem. 1971 Mar 10;246(5):1461–1467. [PubMed] [Google Scholar]
- Regoeczi E., Chindemi P. A., Debanne M. T., Hatton M. W. Dual nature of the hepatic lectin pathway for human asialotransferrin type 3 in the rat. J Biol Chem. 1982 May 25;257(10):5431–5436. [PubMed] [Google Scholar]
- Regoeczi E., Koj A. Diacytosis of human asialotransferrin type 3 in the rat liver is due to the sequential engagement of two receptors. Exp Cell Res. 1985 Sep;160(1):1–8. doi: 10.1016/0014-4827(85)90230-7. [DOI] [PubMed] [Google Scholar]
- Seglen P. O. Preparation of isolated rat liver cells. Methods Cell Biol. 1976;13:29–83. doi: 10.1016/s0091-679x(08)61797-5. [DOI] [PubMed] [Google Scholar]
- Soda R., Tavassoli M. Distribution of insulin receptors in liver cell suspensions using a minibead probe. Highest density is on endothelial cell. Exp Cell Res. 1983 May;145(2):389–395. doi: 10.1016/0014-4827(83)90017-4. [DOI] [PubMed] [Google Scholar]
- Soda R., Tavassoli M., Jacobsen D. W. Receptor distribution and the endothelial uptake of transcobalamin II in liver cell suspensions. Blood. 1985 Apr;65(4):795–802. [PubMed] [Google Scholar]
- Soda R., Tavassoli M. Liver endothelium and not hepatocytes or Kupffer cells have transferrin receptors. Blood. 1984 Feb;63(2):270–276. [PubMed] [Google Scholar]
- Soda R., Tavassoli M. Transendothelial transport (transcytosis) of iron-transferrin complex in the bone marrow. J Ultrastruct Res. 1984 Jul;88(1):18–29. doi: 10.1016/s0022-5320(84)90178-3. [DOI] [PubMed] [Google Scholar]
- Stel H. V., van der Kwast T. H., Veerman E. C. Detection of factor VIII/coagulant antigen in human liver tissue. Nature. 1983 Jun 9;303(5917):530–532. doi: 10.1038/303530a0. [DOI] [PubMed] [Google Scholar]
- Takahashi K., Tavassoli M. A minibead method to study cell surface receptors for various proteins coupled to latex particles. J Ultrastruct Res. 1981 May;75(2):205–217. doi: 10.1016/s0022-5320(81)80136-0. [DOI] [PubMed] [Google Scholar]
- Uchida Y., Tsukada Y., Sugimori T. Distribution of neuraminidase in Arthrobacter and its purification by affinity chromatography. J Biochem. 1977 Nov;82(5):1425–1433. doi: 10.1093/oxfordjournals.jbchem.a131830. [DOI] [PubMed] [Google Scholar]
- Van Lenten L., Ashwell G. Studies on the chemical and enzymatic modification of glycoproteins. A general method for the tritiation of sialic acid-containing glycoproteins. J Biol Chem. 1971 Mar 25;246(6):1889–1894. [PubMed] [Google Scholar]
- Vasile E., Simionescu M., Simionescu N. Visualization of the binding, endocytosis, and transcytosis of low-density lipoprotein in the arterial endothelium in situ. J Cell Biol. 1983 Jun;96(6):1677–1689. doi: 10.1083/jcb.96.6.1677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Young S. P., Bomford A., Williams R. Dual pathways for the uptake of rat asialotransferrin by rat hepatocytes. J Biol Chem. 1983 Apr 25;258(8):4972–4976. [PubMed] [Google Scholar]
- Zahlten R. N., Hagler H. K., Nejtek M. E., Day C. J. Morphological characterization of Kupffer and endothelial cells of rat liver isolated by counterflow elutriation. Gastroenterology. 1978 Jul;75(1):80–87. [PubMed] [Google Scholar]