Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Apr 1;102(4):1320–1324. doi: 10.1083/jcb.102.4.1320

Initial glycosylation and acidic pH in the Golgi apparatus are required for multimerization of von Willebrand factor

PMCID: PMC2114173  PMID: 3082891

Abstract

Two conditions were identified that interfered with the complex polymerization process in biosynthesis of von Willebrand factor (vWf). Treatment of human umbilical vein endothelial cells with tunicamycin inhibited N-linked glycosylation of nascent vWf and the resulting pro- vWf monomers failed to dimerize. The single subunits accumulated in the endoplasmic reticulum and were neither processed further nor secreted. In the presence of a weak base (ammonium chloride or chloroquine), interdimer disulfide bond formation was inhibited in a dose-dependent manner. This process appeared therefore to be pH sensitive and likely to be initiated in the acidic trans-Golgi apparatus (Anderson, R. G. W., and R. K. Pathak, 1985, Cell, 40: 635-643). The weak base had no obvious effect on the other processing steps, i.e. dimerization, complex carbohydrate formation and sulfation, and produced only slight inhibition of prosequence cleavage. On the other hand, the weak base interfered with the targeting of newly synthesized vWf into Weibel- Palade bodies, with all of the vWf being secreted constitutively and none stored in the Weibel-Palade bodies. In summary, initial glycosylation of the nascent vWf protein and low pH in the trans-Golgi apparatus were important conditions for the successful polymerization of human vWf. Genetic defects disrupting any one of these conditions could result in the phenotype of von Willebrand disease.

Full Text

The Full Text of this article is available as a PDF (637.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. G., Pathak R. K. Vesicles and cisternae in the trans Golgi apparatus of human fibroblasts are acidic compartments. Cell. 1985 Mar;40(3):635–643. doi: 10.1016/0092-8674(85)90212-0. [DOI] [PubMed] [Google Scholar]
  2. Basu S. K., Goldstein J. L., Anderson R. G., Brown M. S. Monensin interrupts the recycling of low density lipoprotein receptors in human fibroblasts. Cell. 1981 May;24(2):493–502. doi: 10.1016/0092-8674(81)90340-8. [DOI] [PubMed] [Google Scholar]
  3. Bienkowski R. S. Intracellular degradation of newly synthesized secretory proteins. Biochem J. 1983 Jul 15;214(1):1–10. doi: 10.1042/bj2140001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Boss W. F., Morré D. J., Mollenhauer H. H. Monensin-induced swelling of Golgi apparatus cisternae mediated by a proton gradient. Eur J Cell Biol. 1984 May;34(1):1–8. [PubMed] [Google Scholar]
  5. Conconi M. V., Walker A. M. Chloroquine affects prolactin secretion and Golgi morphology in the mammotroph. Endocrinology. 1984 Mar;114(3):725–734. doi: 10.1210/endo-114-3-725. [DOI] [PubMed] [Google Scholar]
  6. Dunphy W. G., Brands R., Rothman J. E. Attachment of terminal N-acetylglucosamine to asparagine-linked oligosaccharides occurs in central cisternae of the Golgi stack. Cell. 1985 Feb;40(2):463–472. doi: 10.1016/0092-8674(85)90161-8. [DOI] [PubMed] [Google Scholar]
  7. Gimbrone M. A., Jr, Cotran R. S., Folkman J. Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol. 1974 Mar;60(3):673–684. doi: 10.1083/jcb.60.3.673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ginsburg D., Handin R. I., Bonthron D. T., Donlon T. A., Bruns G. A., Latt S. A., Orkin S. H. Human von Willebrand factor (vWF): isolation of complementary DNA (cDNA) clones and chromosomal localization. Science. 1985 Jun 21;228(4706):1401–1406. doi: 10.1126/science.3874428. [DOI] [PubMed] [Google Scholar]
  9. Glickman J., Croen K., Kelly S., Al-Awqati Q. Golgi membranes contain an electrogenic H+ pump in parallel to a chloride conductance. J Cell Biol. 1983 Oct;97(4):1303–1308. doi: 10.1083/jcb.97.4.1303. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hormia M., Lehto V. P., Virtanen I. Intracellular localization of factor VIII-related antigen and fibronectin in cultured human endothelial cells: evidence for divergent routes of intracellular translocation. Eur J Cell Biol. 1984 Mar;33(2):217–228. [PubMed] [Google Scholar]
  11. Hoyer L. W. The factor VIII complex: structure and function. Blood. 1981 Jul;58(1):1–13. [PubMed] [Google Scholar]
  12. Kelly R. B. Pathways of protein secretion in eukaryotes. Science. 1985 Oct 4;230(4721):25–32. doi: 10.1126/science.2994224. [DOI] [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lahav J., Hynes R. O. Involvement of fibronectin, Von Willebrand factor, and fibrinogen in platelet interaction with solid substrata. J Supramol Struct Cell Biochem. 1981;17(4):299–311. doi: 10.1002/jsscb.380170402. [DOI] [PubMed] [Google Scholar]
  15. Loesberg C., Gonsalves M. D., Zandbergen J., Willems C., van Aken W. G., Stel H. V., Van Mourik J. A., De Groot P. G. The effect of calcium on the secretion of factor VIII-related antigen by cultured human endothelial cells. Biochim Biophys Acta. 1983 Sep 22;763(2):160–168. doi: 10.1016/0167-4889(83)90039-3. [DOI] [PubMed] [Google Scholar]
  16. Lynch D. C., Williams R., Zimmerman T. S., Kirby E. P., Livingston D. M. Biosynthesis of the subunits of factor VIIIR by bovine aortic endothelial cells. Proc Natl Acad Sci U S A. 1983 May;80(9):2738–2742. doi: 10.1073/pnas.80.9.2738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Martin S. E., Marder V. J., Francis C. W., Loftus L. S., Barlow G. H. Enzymatic degradation of the factor-VIII-von-Willebrand protein: a unique tryptic fragment with ristocetin cofactor activity. Blood. 1980 May;55(5):848–858. [PubMed] [Google Scholar]
  18. Moore H. P., Gumbiner B., Kelly R. B. Chloroquine diverts ACTH from a regulated to a constitutive secretory pathway in AtT-20 cells. 1983 Mar 31-Apr 6Nature. 302(5907):434–436. doi: 10.1038/302434a0. [DOI] [PubMed] [Google Scholar]
  19. Paul J. I., Hynes R. O. Multiple fibronectin subunits and their post-translational modifications. J Biol Chem. 1984 Nov 10;259(21):13477–13487. [PubMed] [Google Scholar]
  20. Robbins P. W., Hubbard S. C., Turco S. J., Wirth D. F. Proposal for a common oligosaccharide intermediate in the synthesis of membrane glycoproteins. Cell. 1977 Dec;12(4):893–900. doi: 10.1016/0092-8674(77)90153-2. [DOI] [PubMed] [Google Scholar]
  21. Ruggeri Z. M., Zimmerman T. S. Variant von Willebrand's disease: characterization of two subtypes by analysis of multimeric composition of factor VIII/von Willebrand factor in plasma and platelets. J Clin Invest. 1980 Jun;65(6):1318–1325. doi: 10.1172/JCI109795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sakariassen K. S., Bolhuis P. A., Sixma J. J. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature. 1979 Jun 14;279(5714):636–638. doi: 10.1038/279636a0. [DOI] [PubMed] [Google Scholar]
  23. Sakariassen K. S., Cattaneo M., vd Berg A., Ruggeri Z. M., Mannucci P. M., Sixma J. J. DDAVP enhances platelet adherence and platelet aggregate growth on human artery subendothelium. Blood. 1984 Jul;64(1):229–236. [PubMed] [Google Scholar]
  24. Seglen P. O. Inhibitors of lysosomal function. Methods Enzymol. 1983;96:737–764. doi: 10.1016/s0076-6879(83)96063-9. [DOI] [PubMed] [Google Scholar]
  25. Sengel A., Stoebner P. Golgi origin of tubular inclusions in endothelial cells. J Cell Biol. 1970 Jan;44(1):223–226. doi: 10.1083/jcb.44.1.223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Struck D. K., Lennarz W. J. Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin. J Biol Chem. 1977 Feb 10;252(3):1007–1013. [PubMed] [Google Scholar]
  27. Tarentino A. L., Trimble R. B., Maley F. endo-beta-N-Acetylglucosaminidase from Streptomyces plicatus. Methods Enzymol. 1978;50:574–580. doi: 10.1016/0076-6879(78)50065-7. [DOI] [PubMed] [Google Scholar]
  28. Tartakoff A. M. Perturbation of vesicular traffic with the carboxylic ionophore monensin. Cell. 1983 Apr;32(4):1026–1028. doi: 10.1016/0092-8674(83)90286-6. [DOI] [PubMed] [Google Scholar]
  29. Tschopp T. B., Weiss H. J., Baumgartner H. R. Decreased adhesion of platelets to subendothelium in von Willebrand's disease. J Lab Clin Med. 1974 Feb;83(2):296–300. [PubMed] [Google Scholar]
  30. Wagner D. D., Marder V. J. Biosynthesis of von Willebrand protein by human endothelial cells. Identification of a large precursor polypeptide chain. J Biol Chem. 1983 Feb 25;258(4):2065–2067. [PubMed] [Google Scholar]
  31. Wagner D. D., Marder V. J. Biosynthesis of von Willebrand protein by human endothelial cells: processing steps and their intracellular localization. J Cell Biol. 1984 Dec;99(6):2123–2130. doi: 10.1083/jcb.99.6.2123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wagner D. D., Mayadas T., Urban-Pickering M., Lewis B. H., Marder V. J. Inhibition of disulfide bonding of von Willebrand protein by monensin results in small, functionally defective multimers. J Cell Biol. 1985 Jul;101(1):112–120. doi: 10.1083/jcb.101.1.112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wagner D. D., Olmsted J. B., Marder V. J. Immunolocalization of von Willebrand protein in Weibel-Palade bodies of human endothelial cells. J Cell Biol. 1982 Oct;95(1):355–360. doi: 10.1083/jcb.95.1.355. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES