Abstract
Chinese hamster ovary cell mutants resistant to the microtubule stabilizing drug taxol were isolated in a single step. Of these 139 drug-resistant mutants, 59 exhibit an absolute requirement for taxol for normal growth and division, 13 have a partial requirement, and 69 grow normally without the drug. Two-dimensional gel analysis of whole cell proteins reveal "extra" spots representing altered tubulins in 13 of the mutants. Six of these have an altered alpha-tubulin and seven have an altered beta-tubulin. Cells with an absolute dependence on taxol become large and multinucleated when deprived of the drug. In contrast, partially dependent cells exhibit some multinucleation, but most cells appear normal. In one mutant that has an absolute dependence on taxol, the cells appear to die more quickly and their nuclei do not increase in size or number. As previously found for another taxol- dependent mutant (Cabral, F., 1983, J. Cell. Biol., 97:22-29), the taxol dependence of the mutants described in this paper behaves recessively in somatic cell hybrids, and the cells are more susceptible to being killed by colcemid than are the wild-type parental cells. When compared with wild-type cells, taxol-dependent mutants have normal arrays of cytoplasmic microtubules but form much smaller mitotic spindles in the presence of taxol. When deprived of the drug, however, these mutants cannot complete assembly of the mitotic spindle apparatus, as judged by tubulin immunofluorescence. Thus, the defects leading to taxol dependence in these mutants with defined alterations in alpha- and beta-tubulin appear to result from the cell's inability to form a functional mitotic spindle. Reversion analysis indicates that the properties of at least one alpha-tubulin mutant are conferred by the altered tubulin seen on two-dimensional gels.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams M., Warr J. R. Colchicine-resistant mutants of Chlamydomonas reinhardi. Exp Cell Res. 1972;71(2):473–475. doi: 10.1016/0014-4827(72)90319-9. [DOI] [PubMed] [Google Scholar]
- Cabral F. R. Isolation of Chinese hamster ovary cell mutants requiring the continuous presence of taxol for cell division. J Cell Biol. 1983 Jul;97(1):22–29. doi: 10.1083/jcb.97.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cabral F., Abraham I., Gottesman M. M. Isolation of a taxol-resistant Chinese hamster ovary cell mutant that has an alteration in alpha-tubulin. Proc Natl Acad Sci U S A. 1981 Jul;78(7):4388–4391. doi: 10.1073/pnas.78.7.4388. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cabral F. Genetic dissection of the assembly of microtubules and their role in mitosis. Cell Muscle Motil. 1984;5:313–340. doi: 10.1007/978-1-4684-4592-3_9. [DOI] [PubMed] [Google Scholar]
- Cabral F., Schatz G. High resolution one- and two- dimensional electrophoretic analysis of mitochondrial membrane polypeptides. Methods Enzymol. 1979;56:602–613. doi: 10.1016/0076-6879(79)56057-1. [DOI] [PubMed] [Google Scholar]
- Cabral F., Sobel M. E., Gottesman M. M. CHO mutants resistant to colchicine, colcemid or griseofulvin have an altered beta-tubulin. Cell. 1980 May;20(1):29–36. doi: 10.1016/0092-8674(80)90231-7. [DOI] [PubMed] [Google Scholar]
- Cabral F., Wible L., Brenner S., Brinkley B. R. Taxol-requiring mutant of Chinese hamster ovary cells with impaired mitotic spindle assembly. J Cell Biol. 1983 Jul;97(1):30–39. doi: 10.1083/jcb.97.1.30. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gambino J., Bergen L. G., Morris N. R. Effects of mitotic and tubulin mutations on microtubule architecture in actively growing protoplasts of Aspergillus nidulans. J Cell Biol. 1984 Sep;99(3):830–838. doi: 10.1083/jcb.99.3.830. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jha K. K., Ozer H. L. Expression of transformation in cell hybrids. I. Isolation and application of density-inhibited Balb/3T3 cells deficient in hypoxanthine phosphoribosyltransferase and resistant to ouabain. Somatic Cell Genet. 1976 May;2(3):215–223. doi: 10.1007/BF01538960. [DOI] [PubMed] [Google Scholar]
- Keates R. A., Sarangi F., Ling V. Structural and functional alterations in microtubule protein from Chinese hamster ovary cell mutants. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5638–5642. doi: 10.1073/pnas.78.9.5638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lederberg S., Stetten G. Colcemid sensitivity of fission yeast and the isolation of colcemid-resistant mutants. Science. 1970 Apr 24;168(3930):485–487. doi: 10.1126/science.168.3930.485. [DOI] [PubMed] [Google Scholar]
- Ling V., Aubin J. E., Chase A., Sarangi F. Mutants of Chinese hamster ovary (CHO) cells with altered colcemid-binding affinity. Cell. 1979 Oct;18(2):423–430. doi: 10.1016/0092-8674(79)90061-8. [DOI] [PubMed] [Google Scholar]
- Ling V., Thompson L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974 Feb;83(1):103–116. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
- Morris N. R., Lai M. H., Oakley C. E. Identification of a gene for alpha-tubulin in Aspergillus nidulans. Cell. 1979 Feb;16(2):437–442. doi: 10.1016/0092-8674(79)90019-9. [DOI] [PubMed] [Google Scholar]
- Oakley B. R., Morris N. R. A beta-tubulin mutation in Aspergillus nidulans that blocks microtubule function without blocking assembly. Cell. 1981 Jun;24(3):837–845. doi: 10.1016/0092-8674(81)90109-4. [DOI] [PubMed] [Google Scholar]
- Oakley B. R., Morris N. R. Nuclear movement is beta--tubulin-dependent in Aspergillus nidulans. Cell. 1980 Jan;19(1):255–262. doi: 10.1016/0092-8674(80)90407-9. [DOI] [PubMed] [Google Scholar]
- Schibler M. J., Cabral F. R. Maytansine-resistant mutants of Chinese hamster ovary cells with an alteration in alpha-tubulin. Can J Biochem Cell Biol. 1985 Jun;63(6):503–510. doi: 10.1139/o85-069. [DOI] [PubMed] [Google Scholar]
- Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
- Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schliwa M. Mechanisms of intracellular organelle transport. Cell Muscle Motil. 1984;5:1-82,403-6. doi: 10.1007/978-1-4684-4592-3_1. [DOI] [PubMed] [Google Scholar]
- Sheir-Neiss G., Lai M. H., Morris N. R. Identification of a gene for beta-tubulin in Aspergillus nidulans. Cell. 1978 Oct;15(2):639–647. doi: 10.1016/0092-8674(78)90032-6. [DOI] [PubMed] [Google Scholar]
- Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
- Strohman R. C., Moss P. S., Micou-Eastwood J., Spector D., Przybyla A., Paterson B. Messenger RNA for myosin polypeptides: isolation from single myogenic cell cultures. Cell. 1977 Feb;10(2):265–273. doi: 10.1016/0092-8674(77)90220-3. [DOI] [PubMed] [Google Scholar]
- Warr J. R., Flanagan D. J., Anderson M. Mutants of Chinese hamster ovary cells with altered sensitivity to taxol and benzimidazole carbamates. Cell Biol Int Rep. 1982 May;6(5):455–460. doi: 10.1016/0309-1651(82)90117-5. [DOI] [PubMed] [Google Scholar]
- Warr J. R., Gibbons D. Further studies on colchicine-resistant mutants of Chlamydomonas reinhardi. Exp Cell Res. 1974 Mar 30;85(1):117–122. doi: 10.1016/0014-4827(74)90220-1. [DOI] [PubMed] [Google Scholar]
- Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]