Abstract
The motile behavior and cytoskeletal structures of fish epidermal cells (keratocytes) in the presence and absence of direct current (DC) electric fields were examined. These cells spontaneously show highly directional locomotion in culture, migrating at rates of up to 1 micron/s. When DC electric fields between 0.5 and 15 V/cm are applied, single epidermal cells as well as cell clusters and cell sheets migrate towards the cathode. Cell clusters and sheets break apart into single migratory cells in the upper range of these field strengths. Cell shape and morphology are unaltered when the keratocytes are guided by an electric field. Neither the spontaneous locomotion nor the electrically guided motility were found to be microtubule dependent. 1 mM La3+, 10 mM Co2+, 50 microM verapamil, and 50 microM nitrendipine (calcium channel antagonists) reversibly inhibited lamellipod formation and cell locomotion in both spontaneously migrating and electrically guided cells. Ciba-Geigy Product 28392, which stimulates the opening of calcium channels, and is a competitive inhibitor of nitrendipine, has no effect on the locomotion of keratocytes. Cell motility was also unaffected by hyperpolarizing and depolarizing (low and high K+) media. It is argued that while a tissue cell may accommodate changes in resting membrane potential without becoming more or less motile, the cell may not be able to counterbalance the effects of depolarization and hyperpolarization simultaneously. In this context, a gradient of membrane potential, which is induced by an external DC electric field, will serve as a persistent stimulus for cell locomotion.
Full Text
The Full Text of this article is available as a PDF (1.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Albrecht-Buehler G., Bushnell A. The orientation of centrioles in migrating 3T3 cells. Exp Cell Res. 1979 Apr;120(1):111–118. doi: 10.1016/0014-4827(79)90542-1. [DOI] [PubMed] [Google Scholar]
- Albrecht-Buehler G. Phagokinetic tracks of 3T3 cells: parallels between the orientation of track segments and of cellular structures which contain actin or tubulin. Cell. 1977 Oct;12(2):333–339. doi: 10.1016/0092-8674(77)90109-x. [DOI] [PubMed] [Google Scholar]
- Bancroft F. W. On the influence of the relative concentration of calcium ions on the reversal of the polar effects of the galvanic current in paramecium. J Physiol. 1906 Oct 29;34(6):444–463. doi: 10.1113/jphysiol.1906.sp001167. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boucek M. M., Snyderman R. Calcium influx requirement for human neutrophil chemotaxis: inhibition by lanthanum chloride. Science. 1976 Sep 3;193(4256):905–907. doi: 10.1126/science.948752. [DOI] [PubMed] [Google Scholar]
- Cooper M. S. Gap junctions increase the sensitivity of tissue cells to exogenous electric fields. J Theor Biol. 1984 Nov 7;111(1):123–130. doi: 10.1016/s0022-5193(84)80200-3. [DOI] [PubMed] [Google Scholar]
- Cooper M. S., Keller R. E. Perpendicular orientation and directional migration of amphibian neural crest cells in dc electrical fields. Proc Natl Acad Sci U S A. 1984 Jan;81(1):160–164. doi: 10.1073/pnas.81.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cooper M. S., Schliwa M. Electrical and ionic controls of tissue cell locomotion in DC electric fields. J Neurosci Res. 1985;13(1-2):223–244. doi: 10.1002/jnr.490130116. [DOI] [PubMed] [Google Scholar]
- Dipasquale A. Locomotion of epithelial cells. Factors involved in extension of the leading edge. Exp Cell Res. 1975 Oct 15;95(2):425–439. doi: 10.1016/0014-4827(75)90568-6. [DOI] [PubMed] [Google Scholar]
- Eckert R., Brehm P. Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng. 1979;8:353–383. doi: 10.1146/annurev.bb.08.060179.002033. [DOI] [PubMed] [Google Scholar]
- Eckert R., Chad J. E. Inactivation of Ca channels. Prog Biophys Mol Biol. 1984;44(3):215–267. doi: 10.1016/0079-6107(84)90009-9. [DOI] [PubMed] [Google Scholar]
- Erickson C. A., Nuccitelli R. Embryonic fibroblast motility and orientation can be influenced by physiological electric fields. J Cell Biol. 1984 Jan;98(1):296–307. doi: 10.1083/jcb.98.1.296. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erne P., Bürgisser E., Bühler F. R., Dubach B., Kühnis H., Meier M., Rogg H. Enhancement of calcium influx in human platelets by CGP 28392, a novel dihydropyridine. Biochem Biophys Res Commun. 1984 Feb 14;118(3):842–847. doi: 10.1016/0006-291x(84)91471-2. [DOI] [PubMed] [Google Scholar]
- Gail M. H., Boone C. W. Effect of colcemid on fibroblast motility. Exp Cell Res. 1971 Mar;65(1):221–227. doi: 10.1016/s0014-4827(71)80070-8. [DOI] [PubMed] [Google Scholar]
- Gotlieb A. I., May L. M., Subrahmanyan L., Kalnins V. I. Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J Cell Biol. 1981 Nov;91(2 Pt 1):589–594. doi: 10.1083/jcb.91.2.589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goy M. F., Springer M. S., Adler J. Sensory transduction in Escherichia coli: role of a protein methylation reaction in sensory adaptation. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4964–4968. doi: 10.1073/pnas.74.11.4964. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hagiwara S., Takahashi K. Surface density of calcium ions and calcium spikes in the barnacle muscle fiber membrane. J Gen Physiol. 1967 Jan;50(3):583–601. doi: 10.1085/jgp.50.3.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hinkle L., McCaig C. D., Robinson K. R. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J Physiol. 1981 May;314:121–135. doi: 10.1113/jphysiol.1981.sp013695. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. F. Electrophoresis along cell membranes. Nature. 1977 Feb 17;265(5595):600–602. doi: 10.1038/265600a0. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F., Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng. 1977;6:445–476. doi: 10.1146/annurev.bb.06.060177.002305. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F., Poo M. M. Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool. 1979 Jul;209(1):115–128. doi: 10.1002/jez.1402090114. [DOI] [PubMed] [Google Scholar]
- Jahn T. L. Contraction of protoplasm. II. Theory: anodal vs. cathodal in relation to calcium. J Cell Physiol. 1966 Oct;68(2):135–148. doi: 10.1002/jcp.1040680208. [DOI] [PubMed] [Google Scholar]
- Kolega J., Shure M. S., Chen W. T., Young N. D. Rapid cellular translocation is related to close contacts formed between various cultured cells and their substrata. J Cell Sci. 1982 Apr;54:23–34. doi: 10.1242/jcs.54.1.23. [DOI] [PubMed] [Google Scholar]
- Kolega J. The movement of cell clusters in vitro: morphology and directionality. J Cell Sci. 1981 Jun;49:15–32. doi: 10.1242/jcs.49.1.15. [DOI] [PubMed] [Google Scholar]
- Kort E. N., Goy M. F., Larsen S. H., Adler J. Methylation of a membrane protein involved in bacterial chemotaxis. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3939–3943. doi: 10.1073/pnas.72.10.3939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kupfer A., Louvard D., Singer S. J. Polarization of the Golgi apparatus and the microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2603–2607. doi: 10.1073/pnas.79.8.2603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luther P. W., Peng H. B., Lin J. J. Changes in cell shape and actin distribution induced by constant electric fields. Nature. 1983 May 5;303(5912):61–64. doi: 10.1038/303061a0. [DOI] [PubMed] [Google Scholar]
- Machemer H., de Peyer J. E. Analysis of ciliary beating frequency under voltage clamp control of the membrane. Prog Clin Biol Res. 1982;80:205–210. doi: 10.1002/cm.970020739. [DOI] [PubMed] [Google Scholar]
- Malech H. L., Root R. K., Gallin J. I. Structural analysis of human neutrophil migration. Centriole, microtubule, and microfilament orientation and function during chemotaxis. J Cell Biol. 1977 Dec;75(3):666–693. doi: 10.1083/jcb.75.3.666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McLaughlin S., Poo M. M. The role of electro-osmosis in the electric-field-induced movement of charged macromolecules on the surfaces of cells. Biophys J. 1981 Apr;34(1):85–93. doi: 10.1016/S0006-3495(81)84838-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. B., Koshland D. E., Jr Sensory electrophysiology of bacteria: relationship of the membrane potential to motility and chemotaxis in Bacillus subtilis. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4752–4756. doi: 10.1073/pnas.74.11.4752. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Naitoh Y. Ionic control of the reversal response of cilia in Paramecium caudatum. A calcium hypothesis. J Gen Physiol. 1968 Jan;51(1):85–103. doi: 10.1085/jgp.51.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nuccitelli R., Erickson C. A. Embryonic cell motility can be guided by physiological electric fields. Exp Cell Res. 1983 Aug;147(1):195–201. doi: 10.1016/0014-4827(83)90284-7. [DOI] [PubMed] [Google Scholar]
- Orida N., Feldman J. D. Directional protrusive pseudopodial activity and motility in macrophages induced by extracellular electric fields. Cell Motil. 1982;2(3):243–255. doi: 10.1002/cm.970020305. [DOI] [PubMed] [Google Scholar]
- Patel N., Poo M. M. Orientation of neurite growth by extracellular electric fields. J Neurosci. 1982 Apr;2(4):483–496. doi: 10.1523/JNEUROSCI.02-04-00483.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poo M. In situ electrophoresis of membrane components. Annu Rev Biophys Bioeng. 1981;10:245–276. doi: 10.1146/annurev.bb.10.060181.001333. [DOI] [PubMed] [Google Scholar]
- Ramsey W. S. Analysis of individual leucocyte behavior during chemotaxis.. Exp Cell Res. 1972 Jan;70(1):129–139. doi: 10.1016/0014-4827(72)90190-5. [DOI] [PubMed] [Google Scholar]
- Sato E., Nakamura O., Ito S. Ionic dependence and transmission of epidermal action potentials in a newt embryo. Dev Biol. 1983 Jun;97(2):460–467. doi: 10.1016/0012-1606(83)90103-3. [DOI] [PubMed] [Google Scholar]
- Schliwa M., van Blerkom J. Structural interaction of cytoskeletal components. J Cell Biol. 1981 Jul;90(1):222–235. doi: 10.1083/jcb.90.1.222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Showell H. J., Becker E. L. The effects of external K+ and Na+ on the chemotaxis of rabbit peritoneal neutrophils. J Immunol. 1976 Jan;116(1):99–105. [PubMed] [Google Scholar]
- Sisken B. F., Smith S. D. The effects of minute direct electrical currents on cultured chick embryo trigeminal ganglia. J Embryol Exp Morphol. 1975 Feb;33(1):29–41. [PubMed] [Google Scholar]
- Spiegelman B. M., Lopata M. A., Kirschner M. W. Aggregation of microtubule initiation sites preceding neurite outgrowth in mouse neuroblastoma cells. Cell. 1979 Feb;16(2):253–263. doi: 10.1016/0092-8674(79)90003-5. [DOI] [PubMed] [Google Scholar]
- Strohmeier R., Bereiter-Hahn J. Control of cell shape and locomotion by external calcium. Exp Cell Res. 1984 Oct;154(2):412–420. doi: 10.1016/0014-4827(84)90165-4. [DOI] [PubMed] [Google Scholar]
- Stump R. F., Robinson K. R. Xenopus neural crest cell migration in an applied electrical field. J Cell Biol. 1983 Oct;97(4):1226–1233. doi: 10.1083/jcb.97.4.1226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van Breemen C., Farinas B. R., Gerba P., McNaughton E. D. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circ Res. 1972 Jan;30(1):44–54. doi: 10.1161/01.res.30.1.44. [DOI] [PubMed] [Google Scholar]
- Vasiliev J. M., Gelfand I. M., Domnina L. V., Ivanova O. Y., Komm S. G., Olshevskaja L. V. Effect of colcemid on the locomotory behaviour of fibroblasts. J Embryol Exp Morphol. 1970 Nov;24(3):625–640. [PubMed] [Google Scholar]
- Wilkinson P. C. Leucocyte locomotion and chemotaxis. The influence of divalent cations and cation ionophores. Exp Cell Res. 1975 Jul;93(2):420–426. doi: 10.1016/0014-4827(75)90468-1. [DOI] [PubMed] [Google Scholar]
- Wulf E., Deboben A., Bautz F. A., Faulstich H., Wieland T. Fluorescent phallotoxin, a tool for the visualization of cellular actin. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4498–4502. doi: 10.1073/pnas.76.9.4498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigmond S. H. Chemotaxis by polymorphonuclear leukocytes. J Cell Biol. 1978 May;77(2):269–287. doi: 10.1083/jcb.77.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigmond S. H., Sullivan S. J., Lauffenburger D. A. Kinetic analysis of chemotactic peptide receptor modulation. J Cell Biol. 1982 Jan;92(1):34–43. doi: 10.1083/jcb.92.1.34. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zigmond S. H., Sullivan S. J. Sensory adaptation of leukocytes to chemotactic peptides. J Cell Biol. 1979 Aug;82(2):517–527. doi: 10.1083/jcb.82.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
