Abstract
To complement studies that have demonstrated the prominent phosphorylation of a 50-kD coated vesicle polypeptide in vitro, we have evaluated the phosphorylation of coated membrane proteins in intact cells. A co-assembly assay has been devised in which extracts of cultured rat sympathetic neurons labeled with [32P]-Pi were combined with unlabeled carrier bovine brain coat proteins and reassembled coat structures were isolated by gradient centrifugation. Two groups of phosphorylated polypeptides, of 100-110 kD (pp100-110) and 155 kD (pp155) apparent molecular mass, were incorporated into reassembled coats. The neuronal pp100-110 are structurally and functionally related to the 100-110-kD component of the bovine brain assembly protein (AP), a protein complex that also contains 50-kD and 16.5-kD components and is characterized by its ability to promote the reassembly of clathrin coat structures under physiological conditions of pH and ionic strength (Zaremba, S. and J. H. Keen, 1983, J. Cell Biol., 97:1337-1348). The neuronal pp155 detected in reassembled coat structures was readily observable in total extracts of [32P]-Pi-labeled neurons dissolved in SDS-containing buffer. A bovine brain counterpart to the neuronal pp155 was also observed when brain coated vesicles were subjected to two- dimensional gel electrophoresis. Phosphoserine was the predominant phosphoaminoacid found in both the pp100 and pp155. A structural and functional counterpart to the 50-kD brain assembly polypeptide (AP50) was also identified in these neurons. Although the brain AP50 is prominently phosphorylated by an endogenous protein kinase in isolated coated vesicle preparations, the neuronal AP50 was not detectably phosphorylated in intact cells as assessed by two-dimensional non- equilibrium pH gradient gel electrophoresis of labeled cells dissolved directly in SDS-containing buffers. These results demonstrate that the bovine brain assembly polypeptides of 50 kD and 100-110 kD that we have previously described, as well as a novel 155-kD polypeptide reported here, have structural and functional counterparts in cultured neurons. They also indicate that phosphorylation of the 100-110-kD AP may be involved in the regulation of coated membrane structure and function. The extent of phosphorylation of the AP50 in intact cells and in isolated coated vesicles is strikingly different: it has been suggested that the latter process reflects an autophosphorylation reaction (Campbell C., J. Squicciarini, M. Shia, P. F. Pilch, and R. E. Fine, 1984, Biochemistry, 23:4420-4426).(ABSTRACT TRUNCATED AT 400 WORDS)
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beemon K., Hunter T. Characterization of Rous sarcoma virus src gene products synthesized in vitro. J Virol. 1978 Nov;28(2):551–566. doi: 10.1128/jvi.28.2.551-566.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Black M. M., Cochran J. M., Kurdyla J. T. Solubility properties of neuronal tubulin: evidence for labile and stable microtubules. Brain Res. 1984 Mar 19;295(2):255–263. doi: 10.1016/0006-8993(84)90974-0. [DOI] [PubMed] [Google Scholar]
- Campbell C., Squicciarini J., Shia M., Pilch P. F., Fine R. E. Identification of a protein kinase as an intrinsic component of rat liver coated vesicles. Biochemistry. 1984 Sep 11;23(19):4420–4426. doi: 10.1021/bi00314a028. [DOI] [PubMed] [Google Scholar]
- Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
- Cooper J. A., Sefton B. M., Hunter T. Detection and quantification of phosphotyrosine in proteins. Methods Enzymol. 1983;99:387–402. doi: 10.1016/0076-6879(83)99075-4. [DOI] [PubMed] [Google Scholar]
- Gard D. L., Kirschner M. W. A polymer-dependent increase in phosphorylation of beta-tubulin accompanies differentiation of a mouse neuroblastoma cell line. J Cell Biol. 1985 Mar;100(3):764–774. doi: 10.1083/jcb.100.3.764. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrison J. C. The effects of glucagon, catecholamines, and the calcium ionophore A23187 on the phosphorylation of rat hepatocyte cytosolic proteins. J Biol Chem. 1978 Oct 10;253(19):7091–7100. [PubMed] [Google Scholar]
- Greengard P. Phosphorylated proteins as physiological effectors. Science. 1978 Jan 13;199(4325):146–152. doi: 10.1126/science.22932. [DOI] [PubMed] [Google Scholar]
- Imhof B. A., Marti U., Boller K., Frank H., Birchmeier W. Association between coated vesicles and microtubules. Exp Cell Res. 1983 Apr 15;145(1):199–207. doi: 10.1016/s0014-4827(83)80021-4. [DOI] [PubMed] [Google Scholar]
- Keen J. H., Willingham M. C., Pastan I. H. Clathrin-coated vesicles: isolation, dissociation and factor-dependent reassociation of clathrin baskets. Cell. 1979 Feb;16(2):303–312. doi: 10.1016/0092-8674(79)90007-2. [DOI] [PubMed] [Google Scholar]
- Keen J. H., Willingham M. C., Pastan I. Clathrin and coated vesicle proteins Immunological characterization. J Biol Chem. 1981 Mar 10;256(5):2538–2544. [PubMed] [Google Scholar]
- Krebs E. G., Beavo J. A. Phosphorylation-dephosphorylation of enzymes. Annu Rev Biochem. 1979;48:923–959. doi: 10.1146/annurev.bi.48.070179.004423. [DOI] [PubMed] [Google Scholar]
- Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moskowitz N., Glassman A., Ores C., Schook W., Puszkin S. Phosphorylation of brain synaptic and coated vesicle proteins by endogenous Ca2+/calmodulin- and cAMP-dependent protein kinases. J Neurochem. 1983 Mar;40(3):711–718. doi: 10.1111/j.1471-4159.1983.tb08037.x. [DOI] [PubMed] [Google Scholar]
- O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
- O'Farrell P. Z., Goodman H. M., O'Farrell P. H. High resolution two-dimensional electrophoresis of basic as well as acidic proteins. Cell. 1977 Dec;12(4):1133–1141. doi: 10.1016/0092-8674(77)90176-3. [DOI] [PubMed] [Google Scholar]
- Pauloin A., Bernier I., eJollès P. Presence of cyclic nucleotide-Ca2+ independent protein kinase in bovine brain coated vesicles. Nature. 1982 Aug 5;298(5874):574–576. doi: 10.1038/298574a0. [DOI] [PubMed] [Google Scholar]
- Pauloin A., Jollès P. Internal control of the coated vesicle pp50-specific kinase complex. Nature. 1984 Sep 20;311(5983):265–267. doi: 10.1038/311265a0. [DOI] [PubMed] [Google Scholar]
- Pearse B. M., Robinson M. S. Purification and properties of 100-kd proteins from coated vesicles and their reconstitution with clathrin. EMBO J. 1984 Sep;3(9):1951–1957. doi: 10.1002/j.1460-2075.1984.tb02075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Peng I., Binder L. I., Black M. M. Cultured neurons contain a variety of microtubule-associated proteins. Brain Res. 1985 Dec 30;361(1-2):200–211. doi: 10.1016/0006-8993(85)91290-9. [DOI] [PubMed] [Google Scholar]
- Pfeffer S. R., Drubin D. G., Kelly R. B. Identification of three coated vesicle components as alpha- and beta-tubulin linked to a phosphorylated 50,000-dalton polypeptide. J Cell Biol. 1983 Jul;97(1):40–47. doi: 10.1083/jcb.97.1.40. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlossman D. M., Schmid S. L., Braell W. A., Rothman J. E. An enzyme that removes clathrin coats: purification of an uncoating ATPase. J Cell Biol. 1984 Aug;99(2):723–733. doi: 10.1083/jcb.99.2.723. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steinberg R. A., O'Farrell P. H., Friedrich U., Coffino P. Mutations causing charge alterations in regulatory subunits of the cAMP-dependent protein kinase of cultured S49 lymphoma cells. Cell. 1977 Mar;10(3):381–391. doi: 10.1016/0092-8674(77)90025-3. [DOI] [PubMed] [Google Scholar]
- Unanue E. R., Ungewickell E., Branton D. The binding of clathrin triskelions to membranes from coated vesicles. Cell. 1981 Nov;26(3 Pt 1):439–446. doi: 10.1016/0092-8674(81)90213-0. [DOI] [PubMed] [Google Scholar]
- Zaremba S., Keen J. H. Assembly polypeptides from coated vesicles mediate reassembly of unique clathrin coats. J Cell Biol. 1983 Nov;97(5 Pt 1):1339–1347. doi: 10.1083/jcb.97.5.1339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zaremba S., Keen J. H. Limited proteolytic digestion of coated vesicle assembly polypeptides abolishes reassembly activity. J Cell Biochem. 1985;28(1):47–58. doi: 10.1002/jcb.240280108. [DOI] [PubMed] [Google Scholar]