Abstract
Treatment of erythrocyte ghosts in random positions in a suspension with membrane fusion-inducing direct current electric field pulses causes the membranes to become fusogenic. Significant fusion yields are observed if the membranes are dielectrophoretically aligned into membrane-membrane contact with a weak alternating electric field as much as 5 min after the application of the pulses. This demonstrates that a long-lived membrane structural alteration is involved in this fusion mechanism. Other experiments indicate that the areas on the membrane which become fusogenic after treatment with the pulses may be very highly localized. The locations of these fusogenic areas coincide with where the trans-membrane electric field strength was greatest during the pulse. The fusogenic membrane alteration, or components thereof, in these areas laterally diffuses very slowly or not at all, or, to be fusogenic, must be present at concentrations in the membrane above a certain threshold. The loss of soluble 0.9-3-nm-diameter fluorescent probes from resealed cytoplasmic compartments of randomly positioned erythrocyte ghosts occurs through electric field pulse- induced pores only during a pulse but not between pulses or after a train of pulses if the probe diameter is 1.2 nm or greater. For a given pulse treatment of membranes in random positions in suspensions, an increase in ionic strength of the medium results in (a) a decrease in loss during the pulse, (b) no difference in loss between pulses, and (c) an increase in fusion yield when membrane-membrane contact is established. The latter two results (b and c) are incompatible with a fusion mechanism that proposes a simple relationship between electric field-induced pores and fusion.
Full Text
The Full Text of this article is available as a PDF (580.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- DODGE J. T., MITCHELL C., HANAHAN D. J. The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch Biochem Biophys. 1963 Jan;100:119–130. doi: 10.1016/0003-9861(63)90042-0. [DOI] [PubMed] [Google Scholar]
- Dimitrov D. S., Jain R. K. Membrane stability. Biochim Biophys Acta. 1984 Dec 4;779(4):437–468. doi: 10.1016/0304-4157(84)90020-0. [DOI] [PubMed] [Google Scholar]
- Kikuchi K., Yoshioka K. Electric field-induced conformational changes of polyp(L-lysine) studied by transient electric birefringence. Biopolymers. 1976 Sep;15(9):1669–1676. doi: 10.1002/bip.1976.360150904. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr, Tsong T. Y. Survival of sucrose-loaded erythrocytes in the circulation. Nature. 1978 Mar 16;272(5650):258–260. doi: 10.1038/272258a0. [DOI] [PubMed] [Google Scholar]
- Kinosita K., Jr, Tsong T. Y. Voltage-induced conductance in human erythrocyte membranes. Biochim Biophys Acta. 1979 Jul 5;554(2):479–497. doi: 10.1016/0005-2736(79)90386-9. [DOI] [PubMed] [Google Scholar]
- Lieber M. R., Steck T. L. A description of the holes in human erythrocyte membrane ghosts. J Biol Chem. 1982 Oct 10;257(19):11651–11659. [PubMed] [Google Scholar]
- Lieber M. R., Steck T. L. Dynamics of the holes in human erythrocyte membrane ghosts. J Biol Chem. 1982 Oct 10;257(19):11660–11666. [PubMed] [Google Scholar]
- Lo M. M., Tsong T. Y., Conrad M. K., Strittmatter S. M., Hester L. D., Snyder S. H. Monoclonal antibody production by receptor-mediated electrically induced cell fusion. 1984 Aug 30-Sep 5Nature. 310(5980):792–794. doi: 10.1038/310792a0. [DOI] [PubMed] [Google Scholar]
- Schwister K., Deuticke B. Formation and properties of aqueous leaks induced in human erythrocytes by electrical breakdown. Biochim Biophys Acta. 1985 Jun 27;816(2):332–348. doi: 10.1016/0005-2736(85)90501-2. [DOI] [PubMed] [Google Scholar]
- Serpersu E. H., Kinosita K., Jr, Tsong T. Y. Reversible and irreversible modification of erythrocyte membrane permeability by electric field. Biochim Biophys Acta. 1985 Feb 14;812(3):779–785. doi: 10.1016/0005-2736(85)90272-x. [DOI] [PubMed] [Google Scholar]
- Sowers A. E. Characterization of electric field-induced fusion in erythrocyte ghost membranes. J Cell Biol. 1984 Dec;99(6):1989–1996. doi: 10.1083/jcb.99.6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sowers A. E. Movement of a fluorescent lipid label from a labeled erythrocyte membrane to an unlabeled erythrocyte membrane following electric-field-induced fusion. Biophys J. 1985 Apr;47(4):519–525. doi: 10.1016/S0006-3495(85)83946-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Teissie J., Knutson V. P., Tsong T. Y., Lane M. D. Electric pulse-induced fusion of 3T3 cells in monolayer culture. Science. 1982 Apr 30;216(4545):537–538. doi: 10.1126/science.7071601. [DOI] [PubMed] [Google Scholar]
- Tsuji K., Neumann E. Electric-field induced pK-changes in bacteriorhodopsin. FEBS Lett. 1981 Jun 15;128(2):265–268. doi: 10.1016/0014-5793(81)80095-6. [DOI] [PubMed] [Google Scholar]
- Weber H., Förster W., Jacob H. E., Berg H. Microbiological implications of electric field effects. III. Stimulation of yeast protoplast fusion by electric field pulses. Z Allg Mikrobiol. 1981;21(7):555–562. doi: 10.1002/jobm.3630210709. [DOI] [PubMed] [Google Scholar]
- Zimmermann U. Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta. 1982 Nov 30;694(3):227–277. doi: 10.1016/0304-4157(82)90007-7. [DOI] [PubMed] [Google Scholar]