Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 May 1;102(5):1955–1964. doi: 10.1083/jcb.102.5.1955

Regulation of the terminal event in cellular differentiation: biological mechanisms of the loss of proliferative potential

PMCID: PMC2114196  PMID: 2422182

Abstract

Human plasma has been demonstrated to contain factors that induce the sequential expression of nonterminal and terminal adipocyte differentiation in 3T3 T mesenchymal stem cells. We now report the development of methods for the isolation of purified populations of nonterminally differentiated cells and terminally differentiated cells, and we show that it is possible to experimentally induce transition from the nonterminal to the terminal state of differentiation. With this model system it is therefore now possible to examine the biological and molecular processes associated with the terminal event in differentiation, i.e., the irreversible loss of proliferative potential. In this regard, we demonstrate that transition from the nonterminal to terminal state of differentiation is a complex metabolic process that consists of at least two steps and that this process can be triggered by pulse exposure to an inducer for approximately 12 h but that approximately 24-48 h is required for the process to be completed. The data also establish that induction of the terminal event in differentiation requires protein synthesis but not RNA and DNA synthesis. These and additional results suggest that loss of proliferative potential associated with the terminal event in cellular differentiation is a distinct regulatory process, and we suggest that defects in this regulatory process may be of etiological significance in the pathogenesis of specific human diseases, especially cancer.

Full Text

The Full Text of this article is available as a PDF (2.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bennett D. C. Differentiation in mouse melanoma cells: initial reversibility and an on-off stochastic model. Cell. 1983 Sep;34(2):445–453. doi: 10.1016/0092-8674(83)90378-1. [DOI] [PubMed] [Google Scholar]
  2. Chamley-Campbell J. H., Campbell G. R., Ross R. Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol. 1981 May;89(2):379–383. doi: 10.1083/jcb.89.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chen T. R. In situ detection of mycoplasma contamination in cell cultures by fluorescent Hoechst 33258 stain. Exp Cell Res. 1977 Feb;104(2):255–262. doi: 10.1016/0014-4827(77)90089-1. [DOI] [PubMed] [Google Scholar]
  4. Chen Z., Banks J., Rifkind R. A., Marks P. A. Inducer-mediated commitment of murine erythroleukemia cells to differentiation: a multistep process. Proc Natl Acad Sci U S A. 1982 Jan;79(2):471–475. doi: 10.1073/pnas.79.2.471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Connell N. D., Rheinwald J. G. Regulation of the cytoskeleton in mesothelial cells: reversible loss of keratin and increase in vimentin during rapid growth in culture. Cell. 1983 Aug;34(1):245–253. doi: 10.1016/0092-8674(83)90155-1. [DOI] [PubMed] [Google Scholar]
  6. Dean A., Erard F., Schneider A. P., Schechter A. N. Induction of hemoglobin accumulation in human K562 cells by hemin is reversible. Science. 1981 Apr 24;212(4493):459–461. doi: 10.1126/science.6163216. [DOI] [PubMed] [Google Scholar]
  7. Devlin B. H., Konigsberg I. R. Reentry into the cell cycle of differentiated skeletal myocytes. Dev Biol. 1983 Jan;95(1):175–192. doi: 10.1016/0012-1606(83)90016-7. [DOI] [PubMed] [Google Scholar]
  8. Diamond L., O'Brien T. G., Rovera G. Inhibition of adipose conversion of 3T3 fibroblasts by tumour promoters. Nature. 1977 Sep 15;269(5625):247–249. doi: 10.1038/269247a0. [DOI] [PubMed] [Google Scholar]
  9. Fibach E., Reuben R. C., Rifkind R. A., Marks P. A. Effect of hexamethylene bisacetamide on the commitment to differentiation of murine erythroleukemia cells. Cancer Res. 1977 Feb;37(2):440–444. [PubMed] [Google Scholar]
  10. Furmanski P., Silverman D. J., Lubin M. Expression of differentiated functions in mouse neuroblastoma mediated by dibutyryl-cyclic adenosine monophosphate. Nature. 1971 Oct 8;233(5319):413–415. doi: 10.1038/233413a0. [DOI] [PubMed] [Google Scholar]
  11. Green H., Kehinde O. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell. 1975 May;5(1):19–27. doi: 10.1016/0092-8674(75)90087-2. [DOI] [PubMed] [Google Scholar]
  12. Green H., Meuth M. An established pre-adipose cell line and its differentiation in culture. Cell. 1974 Oct;3(2):127–133. doi: 10.1016/0092-8674(74)90116-0. [DOI] [PubMed] [Google Scholar]
  13. Green H. Terminal differentiation of cultured human epidermal cells. Cell. 1977 Jun;11(2):405–416. doi: 10.1016/0092-8674(77)90058-7. [DOI] [PubMed] [Google Scholar]
  14. Gusella J., Geller R., Clarke B., Weeks V., Housman D. Commitment to erythroid differentiation by friend erythroleukemia cells: a stochastic analysis. Cell. 1976 Oct;9(2):221–229. doi: 10.1016/0092-8674(76)90113-6. [DOI] [PubMed] [Google Scholar]
  15. Hoerl B. J., Wier M. L., Scott R. E. Biological mechanisms for the loss of the differentiated phenotype by non-terminally differentiated adipocytes. Exp Cell Res. 1984 Dec;155(2):422–434. doi: 10.1016/0014-4827(84)90203-9. [DOI] [PubMed] [Google Scholar]
  16. Howard M., Paul W. E. Regulation of B-cell growth and differentiation by soluble factors. Annu Rev Immunol. 1983;1:307–333. doi: 10.1146/annurev.iy.01.040183.001515. [DOI] [PubMed] [Google Scholar]
  17. Krawisz B. R., Scott R. E. Coupling of proadipocyte growth arrest and differentiation. I. Induction by heparinized medium containing human plasma. J Cell Biol. 1982 Aug;94(2):394–399. doi: 10.1083/jcb.94.2.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lanotte M., Scott D., Dexter T. M., Allen T. D. Clonal preadipocyte cell lines with different phenotypes derived from murine marrow stroma: factors influencing growth and adipogenesis in vitro. J Cell Physiol. 1982 May;111(2):177–186. doi: 10.1002/jcp.1041110209. [DOI] [PubMed] [Google Scholar]
  19. Lechner J. F., McClendon I. A., LaVeck M. A., Shamsuddin A. M., Harris C. C. Differential control by platelet factors of squamous differentiation in normal and malignant human bronchial epithelial cells. Cancer Res. 1983 Dec;43(12 Pt 1):5915–5921. [PubMed] [Google Scholar]
  20. Levenson R., Housman D. Developmental program of murine erythroleukemia cells. Effect of the inhibition of protein synthesis. J Cell Biol. 1979 Sep;82(3):715–725. doi: 10.1083/jcb.82.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Levenson R., Kernen J., Housman D. Synchronization of MEL cell commitment with cordycepin. Cell. 1979 Dec;18(4):1073–1078. doi: 10.1016/0092-8674(79)90220-4. [DOI] [PubMed] [Google Scholar]
  22. Lorup C. An autoradiographic study of the 3H-uridine and 3H-thymidine incorporation in the regenerating mouse liver. Cell Tissue Kinet. 1977 Sep;10(5):477–485. doi: 10.1111/j.1365-2184.1977.tb00866.x. [DOI] [PubMed] [Google Scholar]
  23. Marks P. A., Chen Z., Banks J., Rifkind R. A. Erythroleukemia cells: variants inducible for hemoglobin synthesis without commitment to terminal cell division. Proc Natl Acad Sci U S A. 1983 Apr;80(8):2281–2284. doi: 10.1073/pnas.80.8.2281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Nadal-Ginard B. Commitment, fusion and biochemical differentiation of a myogenic cell line in the absence of DNA synthesis. Cell. 1978 Nov;15(3):855–864. doi: 10.1016/0092-8674(78)90270-2. [DOI] [PubMed] [Google Scholar]
  25. Nguyen H. T., Medford R. M., Nadal-Ginard B. Reversibility of muscle differentiation in the absence of commitment: analysis of a myogenic cell line temperature-sensitive for commitment. Cell. 1983 Aug;34(1):281–293. doi: 10.1016/0092-8674(83)90159-9. [DOI] [PubMed] [Google Scholar]
  26. Potten C. S., Lajtha L. G. Stem cells versus stem lines. Ann N Y Acad Sci. 1982 Dec 10;397:49–61. doi: 10.1111/j.1749-6632.1982.tb43416.x. [DOI] [PubMed] [Google Scholar]
  27. Rothman T. P., Gershon M. D., Holtzer H. The relationship of cell division to the acquisition of adrenergic characteristics by developing sympathetic ganglion cell precursors. Dev Biol. 1978 Aug;65(2):322–341. doi: 10.1016/0012-1606(78)90030-1. [DOI] [PubMed] [Google Scholar]
  28. Rovera G., Olashaw N., Meo P. Terminal differentiation in human promyelocytic leukaemic cells in the absence of DNA synthesis. Nature. 1980 Mar 6;284(5751):69–70. doi: 10.1038/284069a0. [DOI] [PubMed] [Google Scholar]
  29. Ruch J. V., Lesot H., Karcher-Djuricic V., Meyer J. M., Olive M. Facts and hypotheses concerning the control of odontoblast differentiation. Differentiation. 1982;21(1):7–12. doi: 10.1111/j.1432-0436.1982.tb01187.x. [DOI] [PubMed] [Google Scholar]
  30. Rumyantsev P. P. Interrelations of the proliferation and differentiation processes during cardiact myogenesis and regeneration. Int Rev Cytol. 1977;51:186–273. [PubMed] [Google Scholar]
  31. Sachs L. Constitutive uncoupling of pathways of gene expression that control growth and differentiation in myeloid leukemia: a model for the origin and progression of malignancy. Proc Natl Acad Sci U S A. 1980 Oct;77(10):6152–6156. doi: 10.1073/pnas.77.10.6152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Salzer J. L., Bunge R. P. Studies of Schwann cell proliferation. I. An analysis in tissue culture of proliferation during development, Wallerian degeneration, and direct injury. J Cell Biol. 1980 Mar;84(3):739–752. doi: 10.1083/jcb.84.3.739. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scott R. E., Boone C. W. PRomotion of smooth surface tumorigenicity by phorbol myristate acetate in Balb/3T3 cells and Balb/3T3 T proadipocytes. J Natl Cancer Inst. 1981 Apr;66(4):733–736. [PubMed] [Google Scholar]
  34. Scott R. E., Florine D. L. Cell cycle models for the aberrant coupling of growth arrest and differentiation in hyperplasia, metaplasia, and neoplasia. Am J Pathol. 1982 Jun;107(3):342–348. [PMC free article] [PubMed] [Google Scholar]
  35. Scott R. E., Florine D. L., Wille J. J., Jr, Yun K. Coupling of growth arrest and differentiation at a distinct state in the G1 phase of the cell cycle: GD. Proc Natl Acad Sci U S A. 1982 Feb;79(3):845–849. doi: 10.1073/pnas.79.3.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Scott R. E., Hoerl B. J., Wille J. J., Jr, Florine D. L., Krawisz B. R., Yun K. Coupling of proadipocyte growth arrest and differentiation. II. A cell cycle model for the physiological control of cell proliferation. J Cell Biol. 1982 Aug;94(2):400–405. doi: 10.1083/jcb.94.2.400. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Scott R. E., Maercklein P. B. An initiator of carcinogenesis selectively and stably inhibits stem cell differentiation: a concept that initiation of carcinogenesis involves multiple phases. Proc Natl Acad Sci U S A. 1985 May;82(9):2995–2999. doi: 10.1073/pnas.82.9.2995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Scott R. E., Wille J. J., Jr, Wier M. L. Mechanisms for the initiation and promotion of carcinogenesis: a review and a new concept. Mayo Clin Proc. 1984 Feb;59(2):107–117. doi: 10.1016/s0025-6196(12)60244-4. [DOI] [PubMed] [Google Scholar]
  39. Sisskin E. E., Barrett J. C. Inhibition of terminal differentiation of hamster epidermal cells in culture by the phorbol ester 12-O-tetradecanoylphorbol-13-acetate. Cancer Res. 1981 Feb;41(2):593–603. [PubMed] [Google Scholar]
  40. Stanbridge E. J., Der C. J., Doersen C. J., Nishimi R. Y., Peehl D. M., Weissman B. E., Wilkinson J. E. Human cell hybrids: analysis of transformation and tumorigenicity. Science. 1982 Jan 15;215(4530):252–259. doi: 10.1126/science.7053574. [DOI] [PubMed] [Google Scholar]
  41. Till J. E. Stem cells in differentiation and neoplasia. J Cell Physiol Suppl. 1982;1:3–11. doi: 10.1002/jcp.1041130405. [DOI] [PubMed] [Google Scholar]
  42. Wells D. J., Stoddard L. S., Getz M. J., Moses H. L. alpha-Amanitin and 5-fluorouridine inhibition of serum-stimulated DNA synthesis in quiescent AKR-2B mouse embryo cells. J Cell Physiol. 1979 Aug;100(2):199–214. doi: 10.1002/jcp.1041000202. [DOI] [PubMed] [Google Scholar]
  43. Wier M. L., Scott R. E. Defective control of terminal differentiation and its role in carcinogenesis in the 3T3 T proadipocyte stem cell line. Cancer Res. 1985 Jul;45(7):3339–3346. [PubMed] [Google Scholar]
  44. Wille J. J., Jr, Pittelkow M. R., Scott R. E. Normal and transformed human prokeratinocytes express divergent effects of a tumor promoter on cell cycle-mediated control of proliferation and differentiation. Carcinogenesis. 1985 Aug;6(8):1181–1187. doi: 10.1093/carcin/6.8.1181. [DOI] [PubMed] [Google Scholar]
  45. Wille J. J., Jr, Pittelkow M. R., Shipley G. D., Scott R. E. Integrated control of growth and differentiation of normal human prokeratinocytes cultured in serum-free medium: clonal analyses, growth kinetics, and cell cycle studies. J Cell Physiol. 1984 Oct;121(1):31–44. doi: 10.1002/jcp.1041210106. [DOI] [PubMed] [Google Scholar]
  46. Willey J. C., Saladino A. J., Ozanne C., Lechner J. F., Harris C. C. Acute effects of 12-O-tetradecanoylphorbol-13-acetate, teleocidin B, or 2,3,7,8-tetrachlorodibenzo-p-dioxin on cultured normal human bronchial epithelial cells. Carcinogenesis. 1984 Feb;5(2):209–215. doi: 10.1093/carcin/5.2.209. [DOI] [PubMed] [Google Scholar]
  47. Yen A., Fairchild D. G. T-cell control of B-cell proliferation uncoupled from differentiation. Cell Immunol. 1982 Dec;74(2):269–276. doi: 10.1016/0008-8749(82)90027-2. [DOI] [PubMed] [Google Scholar]
  48. Yuspa S. H., Morgan D. L. Mouse skin cells resistant to terminal differentiation associated with initiation of carcinogenesis. Nature. 1981 Sep 3;293(5827):72–74. doi: 10.1038/293072a0. [DOI] [PubMed] [Google Scholar]
  49. Zimmermann A., Schaer J. C., Muller D. E., Schneider J., Miodonski-Maculewicz N. M., Schindler R. Formation of mast cell granules in cell cycle mutants of an undifferentiated mastocytoma line: evidence for two different states of reversible proliferative quiescence. J Cell Biol. 1983 Jun;96(6):1756–1760. doi: 10.1083/jcb.96.6.1756. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES