Abstract
In the preceding paper (Kobayashi, T., S. Tsukita, S. Tsukita, Y. Yamamoto, and G. Matsumoto, 1986, J. Cell Biol., 102:1710-1725), we demonstrated biochemically that the subaxolemmal cytoskeleton of the squid giant axon was highly specialized and mainly composed of tubulin, actin, axolinin, and a 255-kD protein. In this paper, we analyzed morphologically the molecular organization of the subaxolemmal cytoskeleton in situ. For thin section electron microscopy, the subaxolemmal cytoskeleton was chemically fixed by the intraaxonal perfusion of the fixative containing tannic acid. With this fixation method, the ultrastructural integrity was well preserved. For freeze- etch replica electron microscopy, the intraaxonally perfused axon was opened and rapidly frozen by touching its inner surface against a cooled copper block (4 degrees K), thus permitting the direct stereoscopic observation of the cytoplasmic surface of the axolemma. Using these techniques, it became clear that the major constituents of the subaxolemmal cytoskeleton were microfilaments and microtubules. The microfilaments were observed to be associated with the axolemma through a specialized meshwork of thin strands, forming spot-like clusters just beneath the axolemma. These filaments were decorated with heavy meromyosin showing a characteristic arrowhead appearance. The microtubules were seen to run parallel to the axolemma and embedded in the fine three-dimensional meshwork of thin strands. In vitro observations of the aggregates of axolinin and immunoelectron microscopic analysis showed that this fine meshwork around microtubules mainly consisted of axolinin. Some microtubules grazed along the axolemma and associated laterally with it through slender strands. Therefore, we were led to conclude that the axolemma of the squid giant axon was specialized into two domains (microtubule- and microfilament- associated domains) by its underlying cytoskeletons.
Full Text
The Full Text of this article is available as a PDF (9.9 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BAKER P. F., HODGKIN A. L., SHAW T. I. Replacement of the axoplasm of giant nerve fibres with artificial solutions. J Physiol. 1962 Nov;164:330–354. doi: 10.1113/jphysiol.1962.sp007025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Black M. M., Lasek R. J. Axonal transport of actin: slow component b is the principal source of actin for the axon. Brain Res. 1979 Aug 10;171(3):401–413. doi: 10.1016/0006-8993(79)91045-x. [DOI] [PubMed] [Google Scholar]
- Branton D., Cohen C. M., Tyler J. Interaction of cytoskeletal proteins on the human erythrocyte membrane. Cell. 1981 Apr;24(1):24–32. doi: 10.1016/0092-8674(81)90497-9. [DOI] [PubMed] [Google Scholar]
- Chan-Palay V. The tripartite structure of the undercoat in initial segments of Purkinje cell axons. Z Anat Entwicklungsgesch. 1972;139(1):1–10. doi: 10.1007/BF00520942. [DOI] [PubMed] [Google Scholar]
- Glenney J. R., Jr, Glenney P., Osborn M., Weber K. An F-actin- and calmodulin-binding protein from isolated intestinal brush borders has a morphology related to spectrin. Cell. 1982 Apr;28(4):843–854. doi: 10.1016/0092-8674(82)90063-0. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Cooke R. Actin-myosin interactions visualized by the quick-freeze, deep-etch replica technique. J Mol Biol. 1983 Sep 5;169(1):97–122. doi: 10.1016/s0022-2836(83)80177-6. [DOI] [PubMed] [Google Scholar]
- Heuser J. E., Kirschner M. W. Filament organization revealed in platinum replicas of freeze-dried cytoskeletons. J Cell Biol. 1980 Jul;86(1):212–234. doi: 10.1083/jcb.86.1.212. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heuser J. E., Reese T. S., Dennis M. J., Jan Y., Jan L., Evans L. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol. 1979 May;81(2):275–300. doi: 10.1083/jcb.81.2.275. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodge A. J., Adelman W. J., Jr The neuroplasmic network in Loligo and Hermissenda neurons. J Ultrastruct Res. 1980 Feb;70(2):220–241. doi: 10.1016/s0022-5320(80)80007-4. [DOI] [PubMed] [Google Scholar]
- Ishikawa H., Bischoff R., Holtzer H. Formation of arrowhead complexes with heavy meromyosin in a variety of cell types. J Cell Biol. 1969 Nov;43(2):312–328. [PMC free article] [PubMed] [Google Scholar]
- Jockusch H., Jockusch B. M., Burger M. M. Nerve fibers in culture and their interactions with non-neural cells visualized by immunofluorescence. J Cell Biol. 1979 Mar;80(3):629–641. doi: 10.1083/jcb.80.3.629. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kobayashi T., Tsukita S., Tsukita S., Yamamoto Y., Matsumoto G. Subaxolemmal cytoskeleton in squid giant axon. I. Biochemical analysis of microtubules, microfilaments, and their associated high-molecular-weight proteins. J Cell Biol. 1986 May;102(5):1699–1709. doi: 10.1083/jcb.102.5.1699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kuczmarski E. R., Rosenbaum J. L. Studies on the organization and localization of actin and myosin in neurons. J Cell Biol. 1979 Feb;80(2):356–371. doi: 10.1083/jcb.80.2.356. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine J., Willard M. Fodrin: axonally transported polypeptides associated with the internal periphery of many cells. J Cell Biol. 1981 Sep;90(3):631–642. doi: 10.1083/jcb.90.3.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Metuzals J., Hodge A. J., Lasek R. J., Kaiserman-Abramof I. R. Neurofilamentous network and filamentous matrix preserved and isolated by different techniques from squid giant axon. Cell Tissue Res. 1983;228(3):415–432. doi: 10.1007/BF00211465. [DOI] [PubMed] [Google Scholar]
- Metuzals J., Tasaki I. Subaxolemmal filamentous network in the giant nerve fiber of the squid (Loligo pealei L.) and its possible role in excitability. J Cell Biol. 1978 Aug;78(2):597–621. doi: 10.1083/jcb.78.2.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris J. R., Lasek R. J. Monomer-polymer equilibria in the axon: direct measurement of tubulin and actin as polymer and monomer in axoplasm. J Cell Biol. 1984 Jun;98(6):2064–2076. doi: 10.1083/jcb.98.6.2064. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murofushi H., Minami Y., Matsumoto G., Sakai H. Bundling of microtubules in vitro by a high molecular weight protein prepared from the squid axon. J Biochem. 1983 Feb;93(2):639–650. doi: 10.1093/oxfordjournals.jbchem.a134220. [DOI] [PubMed] [Google Scholar]
- Narahashi T., Anderson N. C., Moore J. W. Comparison of tetrodotoxin and procaine in internally perfused squid giant axons. J Gen Physiol. 1967 May;50(5):1413–1428. doi: 10.1085/jgp.50.5.1413. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Repasky E. A., Granger B. L., Lazarides E. Widespread occurrence of avian spectrin in nonerythroid cells. Cell. 1982 Jul;29(3):821–833. doi: 10.1016/0092-8674(82)90444-5. [DOI] [PubMed] [Google Scholar]
- Sakai H., Matsumoto G., Murofushi H. Role of microtubules and axolinin in membrane excitation of the squid giant axon. Adv Biophys. 1985;19:43–89. doi: 10.1016/0065-227x(85)90051-6. [DOI] [PubMed] [Google Scholar]
- Sakai H., Matsumoto G. Tubulin and other proteins from squid giant axon. J Biochem. 1978 May;83(5):1413–1422. doi: 10.1093/oxfordjournals.jbchem.a132051. [DOI] [PubMed] [Google Scholar]
- Shaw G., Osborn M., Weber K. Arrangement of neurofilaments, microtubules and microfilament-associated proteins in cultured dorsal root ganglia cells. Eur J Cell Biol. 1981 Apr;24(1):20–27. [PubMed] [Google Scholar]
- Tanaka H., Shimizu S., Oiwa R., Iwai Y., Omura S. The site of inhibition of cell wall synthesis by 3-amino-3-deoxy-D-glucose in Staphylococcus aureus. J Biochem. 1979 Jul;86(1):155–159. [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H. Cytoskeletal network underlying the human erythrocyte membrane. Thin-section electron microscopy. J Cell Biol. 1980 Jun;85(3):567–576. doi: 10.1083/jcb.85.3.567. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H., Kurokawa M., Morimoto K., Sobue K., Kakiuchi S. Binding sites of calmodulin and actin on the brain spectrin, calspectin. J Cell Biol. 1983 Aug;97(2):574–578. doi: 10.1083/jcb.97.2.574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Ishikawa H., Sato S., Nakao M. Electron microscopic study of reassociation of spectrin and actin with the human erythrocyte membrane. J Cell Biol. 1981 Jul;90(1):70–77. doi: 10.1083/jcb.90.1.70. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Tsukita S., Usukura J., Ishikawa H. ATP-dependent structural changes of the outer dynein arm in Tetrahymena cilia: a freeze-etch replica study. J Cell Biol. 1983 May;96(5):1480–1485. doi: 10.1083/jcb.96.5.1480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsukita S., Usukura J., Tsukita S., Ishikawa H. The cytoskeleton in myelinated axons: a freeze-etch replica study. Neuroscience. 1982;7(9):2135–2147. doi: 10.1016/0306-4522(82)90125-7. [DOI] [PubMed] [Google Scholar]
- Tyler J. M., Branton D. Rotary shadowing of extended molecules dried from glycerol. J Ultrastruct Res. 1980 May;71(2):95–102. doi: 10.1016/s0022-5320(80)90098-2. [DOI] [PubMed] [Google Scholar]
- Willard M., Wiseman M., Levine J., Skene P. Axonal transport of actin in rabbit retinal ganglion cells. J Cell Biol. 1979 Jun;81(3):581–591. doi: 10.1083/jcb.81.3.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
