Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 May 1;102(5):1878–1886. doi: 10.1083/jcb.102.5.1878

The organic matrix of the skeletal spicule of sea urchin embryos

PMCID: PMC2114215  PMID: 3517009

Abstract

The micromeres that arise at the fourth cell division in developing sea urchin embryos give rise to primary mesenchyme, which in turn differentiates and produces calcareous endoskeletal spicules. These spicules have been isolated and purified from pluteus larvae by washing in combinations of ionic and nonionic detergents followed by brief exposure to sodium hypochlorite. The spicules may be demineralized and the integral matrix dissolves. The matrix is composed of a limited number of glycoproteins rich in aspx, glux, gly, ser, and ala, a composition not unlike that found in matrix proteins of biomineralized tissues of molluscs, sponges, and arthropods. There is no evidence for collagen as a component of the matrix. The matrix contains N-linked glycoproteins of the complex type. The matrix arises primarily from proteins synthesized from late gastrulation onward, during the time that spicule deposition occurs. The mixture of proteins binds calcium and is an effective immunogen. Electrophoresis of the glycoproteins on SDS-containing acrylamide gels, followed by blotting and immunocytochemical detection, reveals major components of approximately 47, 50, 57, and 64 kD, and several minor components. These same components may be detected with silver staining or fluorography of amino acid-labeled proteins. In addition to providing convenient molecular marker for the study of the development of the micromere lineage, the spicule matrix glycoproteins provide an interesting system for investigations in biomineralization.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen W. R., Wilt F. H. The amount of nuclear protein synthesis in sea urchin blastulae. Exp Cell Res. 1976 Jan;97:151–163. doi: 10.1016/0014-4827(76)90664-9. [DOI] [PubMed] [Google Scholar]
  2. Benson S., Jones E. M., Crise-Benson N., Wilt F. Morphology of the organic matrix of the spicule of the sea urchin larva. Exp Cell Res. 1983 Oct;148(1):249–253. doi: 10.1016/0014-4827(83)90204-5. [DOI] [PubMed] [Google Scholar]
  3. Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
  4. Cutroneo K. R., Guzman N. A., Liebelt A. G. Elevation of peptidylproline hydroxylase activity and collagen synthesis in spontaneous primary mammary cancers of inbred mice. Cancer Res. 1972 Dec;32(12):2828–2833. [PubMed] [Google Scholar]
  5. Dreyfuss G., Adam S. A., Choi Y. D. Physical change in cytoplasmic messenger ribonucleoproteins in cells treated with inhibitors of mRNA transcription. Mol Cell Biol. 1984 Mar;4(3):415–423. doi: 10.1128/mcb.4.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Harkey M. A., Whiteley A. H. The program of protein synthesis during the development of the micromere-primary mesenchyme cell line in the sea urchin embryo. Dev Biol. 1983 Nov;100(1):12–28. doi: 10.1016/0012-1606(83)90196-3. [DOI] [PubMed] [Google Scholar]
  7. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  8. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  9. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  10. Lee S. L., Veis A., Glonek T. Dentin phosphoprotein: an extracellular calcium-binding protein. Biochemistry. 1977 Jun 28;16(13):2971–2979. doi: 10.1021/bi00632a026. [DOI] [PubMed] [Google Scholar]
  11. Mintz G. R., DeFrancesco S., Lennarz W. J. Spicule formation by cultured embryonic cells from the sea urchin. J Biol Chem. 1981 Dec 25;256(24):13105–13111. [PubMed] [Google Scholar]
  12. Morrissey J. H. Silver stain for proteins in polyacrylamide gels: a modified procedure with enhanced uniform sensitivity. Anal Biochem. 1981 Nov 1;117(2):307–310. doi: 10.1016/0003-2697(81)90783-1. [DOI] [PubMed] [Google Scholar]
  13. Potter J. D., Strang-Brown P., Walker P. L., Iida S. Ca2+ binding to calmodulin. Methods Enzymol. 1983;102:135–143. doi: 10.1016/s0076-6879(83)02014-5. [DOI] [PubMed] [Google Scholar]
  14. Pucci-Minafra I., Casano C., La Rosa C. Collagen synthesis and spicule formation in sea urchin embryos. Cell Differ. 1972 Aug;1(3):157–165. doi: 10.1016/0045-6039(72)90025-5. [DOI] [PubMed] [Google Scholar]
  15. Schneider E. G., Nguyen H. T., Lennarz W. J. The effect of tunicamycin, an inhibitor of protein glycosylation, on embryonic development in the sea urchin. J Biol Chem. 1978 Apr 10;253(7):2348–2355. [PubMed] [Google Scholar]
  16. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Weiner S. Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells. Calcif Tissue Int. 1979 Nov 26;29(2):163–167. doi: 10.1007/BF02408072. [DOI] [PubMed] [Google Scholar]
  18. Weiner S., Hood L. Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science. 1975 Dec 5;190(4218):987–989. doi: 10.1126/science.1188379. [DOI] [PubMed] [Google Scholar]
  19. Wessel G. M., McClay D. R. Sequential expression of germ-layer specific molecules in the sea urchin embryo. Dev Biol. 1985 Oct;111(2):451–463. doi: 10.1016/0012-1606(85)90497-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES