Abstract
Beta-nerve growth factor (NGF) is a protein necessary for the survival and maintenance of sympathetic and sensory neurons that appears to be produced by the target tissues of these neurons in vivo. Both denervation and the culture of explants of one model target, the rat iris, leads to an increase in the NGF content, suggesting that innervating neurons may regulate a step in synthesis or turnover of NGF. To determine whether there is a change in synthesis controlled at the mRNA level, the rat iris has been assayed for its content of NGF mRNA after surgical and chemical denervation and after explant into culture. Using a sensitive blot hybridization assay, a large, rapid increase in the content of NGF mRNA was observed upon explant of the rat iris. The increase was readily detectable within 1 h, reached a maximum increase of 10- to 20-fold by 6 to 12 h, and was still evident after 3 d in culture. The distribution of NGF mRNA in different areas of the iris does not change during this time. This rapid increase in NGF mRNA is also seen in the fully innervated iris in vivo after trauma to the anterior chamber. In contrast, denervation to varying degrees in situ had no effect on NGF mRNA levels. Neither removal of sympathetic innervation by surgical or chemical methods nor combined surgical removal of sympathetic and sensory innervation detectably altered NGF mRNA content. Thus, denervation of the rat iris in situ does not cause the observed accumulation of NGF by increasing the level of NGF mRNA, and the increase in NGF content must be due to other factors.
Full Text
The Full Text of this article is available as a PDF (1.3 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Barth E. M., Korsching S., Thoenen H. Regulation of nerve growth factor synthesis and release in organ cultures of rat iris. J Cell Biol. 1984 Sep;99(3):839–843. doi: 10.1083/jcb.99.3.839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berger E. A., Shooter E. M. Biosynthesis of beta nerve growth factor in mouse submaxillary glands. J Biol Chem. 1978 Feb 10;253(3):804–810. [PubMed] [Google Scholar]
- Boardman M., Basi G. S., Storti R. V. Multiple polyadenylation sites in a Drosophila tropomyosin gene are used to generate functional mRNAs. Nucleic Acids Res. 1985 Mar 11;13(5):1763–1776. doi: 10.1093/nar/13.5.1763. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bourgon P., Pilley F. J., Thompson H. S. Cholinergic supersensitivity of the iris sphincter in Adie's tonic pupil. Am J Ophthalmol. 1978 Mar;85(3):373–377. doi: 10.1016/s0002-9394(14)77733-5. [DOI] [PubMed] [Google Scholar]
- Campenot R. B. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4516–4519. doi: 10.1073/pnas.74.10.4516. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cheley S., Anderson R. A reproducible microanalytical method for the detection of specific RNA sequences by dot-blot hybridization. Anal Biochem. 1984 Feb;137(1):15–19. doi: 10.1016/0003-2697(84)90339-7. [DOI] [PubMed] [Google Scholar]
- Dumas M., Schwab M. E., Thoenen H. Retrograde axonal transport of specific macromolecules as a tool for characterizing nerve terminal membranes. J Neurobiol. 1979 Mar;10(2):179–197. doi: 10.1002/neu.480100207. [DOI] [PubMed] [Google Scholar]
- Ebendal T., Olson L., Seiger A., Hedlund K. O. Nerve growth factors in the rat iris. Nature. 1980 Jul 3;286(5768):25–28. doi: 10.1038/286025a0. [DOI] [PubMed] [Google Scholar]
- Ebendal T., Olson L., Seiger A. The level of nerve growth factor (NGF) as a function of innervation. A correlation radio-immunoassay and bioassay study of the rat iris. Exp Cell Res. 1983 Oct 15;148(2):311–317. doi: 10.1016/0014-4827(83)90155-6. [DOI] [PubMed] [Google Scholar]
- Gorin P. D., Johnson E. M. Experimental autoimmune model of nerve growth factor deprivation: effects on developing peripheral sympathetic and sensory neurons. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5382–5386. doi: 10.1073/pnas.76.10.5382. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gundersen R. W. Sensory neurite growth cone guidance by substrate adsorbed nerve growth factor. J Neurosci Res. 1985;13(1-2):199–212. doi: 10.1002/jnr.490130114. [DOI] [PubMed] [Google Scholar]
- Harper G. P., Al-Saffar A. M., Pearce F. L., Vernon C. A. The production of nerve growth factor in vitro by tissues of the mouse, rat, and embryonic chick. Dev Biol. 1980 Jun 15;77(2):379–390. doi: 10.1016/0012-1606(80)90482-0. [DOI] [PubMed] [Google Scholar]
- Hendry I. A., Campbell J. Morphometric analysis of rat superior cervical ganglion after axotomy and nerve growth factor treatment. J Neurocytol. 1976 Jun;5(3):351–360. doi: 10.1007/BF01175120. [DOI] [PubMed] [Google Scholar]
- Hendry I. A. The effect of the retrograde axonal transport of nerve growth factor on the morphology of adrenergic neurones. Brain Res. 1977 Oct 7;134(2):213–223. doi: 10.1016/0006-8993(77)91068-x. [DOI] [PubMed] [Google Scholar]
- Hendry I. A. The response of adrenergic neurones to axotomy and nerve growth factor. Brain Res. 1975 Aug 22;94(1):87–97. doi: 10.1016/0006-8993(75)90879-3. [DOI] [PubMed] [Google Scholar]
- Korsching S., Thoenen H. Nerve growth factor in sympathetic ganglia and corresponding target organs of the rat: correlation with density of sympathetic innervation. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3513–3516. doi: 10.1073/pnas.80.11.3513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Korsching S., Thoenen H. Treatment with 6-hydroxydopamine and colchicine decreases nerve growth factor levels in sympathetic ganglia and increases them in the corresponding target tissues. J Neurosci. 1985 Apr;5(4):1058–1061. doi: 10.1523/JNEUROSCI.05-04-01058.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LEVI-MONTALCINI R., MEYER H., HAMBURGER V. In vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res. 1954 Jan;14(1):49–57. [PubMed] [Google Scholar]
- Lehrach H., Diamond D., Wozney J. M., Boedtker H. RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry. 1977 Oct 18;16(21):4743–4751. doi: 10.1021/bi00640a033. [DOI] [PubMed] [Google Scholar]
- Levi-Montalcini R., Booker B. DESTRUCTION OF THE SYMPATHETIC GANGLIA IN MAMMALS BY AN ANTISERUM TO A NERVE-GROWTH PROTEIN. Proc Natl Acad Sci U S A. 1960 Mar;46(3):384–391. doi: 10.1073/pnas.46.3.384. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MALMFORS T., NILSSON O. PARASYMPATHETIC POST-GANGLIONIC DENERVATION OF THE IRIS AND THE PAROTID GLAND IN THE RAT. Acta Morphol Neerl Scand. 1964;6:81–85. [PubMed] [Google Scholar]
- Moses R. A., Feldman M. F. Ocular lesion following fifth-nerve injury in rats. Am J Ophthalmol. 1969 Dec;68(6):1082–1088. doi: 10.1016/0002-9394(69)93451-5. [DOI] [PubMed] [Google Scholar]
- Olson L., Malmfors T. Growth characteristics of adrenergic nerves in the adult rat. Fluorescence histochemical and 3H-noradrenaline uptake studies using tissue transplantations to the anterior chamber of the eye. Acta Physiol Scand Suppl. 1970;348:1–112. [PubMed] [Google Scholar]
- Raviola G. Effects of paracentesis on the blood-aqueous barrier: an electron microscope study on Macaca mulatta using horseradish peroxidase as a tracer. Invest Ophthalmol. 1974 Nov;13(11):828–858. [PubMed] [Google Scholar]
- Scott J., Selby M., Urdea M., Quiroga M., Bell G. I., Rutter W. J. Isolation and nucleotide sequence of a cDNA encoding the precursor of mouse nerve growth factor. Nature. 1983 Apr 7;302(5908):538–540. doi: 10.1038/302538a0. [DOI] [PubMed] [Google Scholar]
- Shelton D. L., Reichardt L. F. Expression of the beta-nerve growth factor gene correlates with the density of sympathetic innervation in effector organs. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7951–7955. doi: 10.1073/pnas.81.24.7951. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sherman L., Levanon D., Lieman-Hurwitz J., Dafni N., Groner Y. Human Cu/Zn superoxide dismutase gene: molecular characterization of its two mRNA species. Nucleic Acids Res. 1984 Dec 21;12(24):9349–9365. doi: 10.1093/nar/12.24.9349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thoenen H., Barde Y. A. Physiology of nerve growth factor. Physiol Rev. 1980 Oct;60(4):1284–1335. doi: 10.1152/physrev.1980.60.4.1284. [DOI] [PubMed] [Google Scholar]
- Thoenen H., Schwab M., Otten U. Nerve growth factor as a mediator of information between effector organs and innervating neurons. Symp Soc Dev Biol. 1978;(35):101–118. doi: 10.1016/b978-0-12-612981-6.50011-9. [DOI] [PubMed] [Google Scholar]
- Ueda N., Muramatsu I., Hayashi H., Fujiwara M. Trigeminal nerve: the possible origin of substance p-nergic response in isolated rabbit iris sphincter muscle. Life Sci. 1982 Jul 26;31(4):369–375. doi: 10.1016/0024-3205(82)90417-9. [DOI] [PubMed] [Google Scholar]
- Ullrich A., Gray A., Berman C., Dull T. J. Human beta-nerve growth factor gene sequence highly homologous to that of mouse. Nature. 1983 Jun 30;303(5920):821–825. doi: 10.1038/303821a0. [DOI] [PubMed] [Google Scholar]
- Yankner B. A., Shooter E. M. The biology and mechanism of action of nerve growth factor. Annu Rev Biochem. 1982;51:845–868. doi: 10.1146/annurev.bi.51.070182.004213. [DOI] [PubMed] [Google Scholar]