Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Jun 1;102(6):2295–2301. doi: 10.1083/jcb.102.6.2295

A chick neural retina adhesion and survival molecule is a retinol- binding protein

PMCID: PMC2114243  PMID: 3754874

Abstract

A 20,000-D protein called purpurin has recently been isolated from the growth-conditioned medium of cultured embryonic chick neural retina cells (Schubert, D., and M. LaCorbiere, 1985, J. Cell Biol., 101:1071- 1077). Purpurin is a constituent of adherons and promotes cell-adheron adhesion by interacting with a cell surface heparan sulfate proteoglycan. It also prolongs the survival of cultured neural retina cells. This paper shows that purpurin is a secretory protein that has sequence homology with a human protein synthesized in the liver that transports retinol in the blood, the serum retinol-binding protein (RBP). Purpurin binds [3H]retinol, and both purpurin and chick serum RBP stimulate the adhesion of neural retina cells, although the serum protein is less active than purpurin. Purpurin and the serum RBP are, however, different molecules, for the serum protein is approximately 3,000 D larger than purpurin and has different silver-staining characteristics. Finally, purpurin supports the survival of dissociated ciliary ganglion cells, indicating that RBPs can act as ciliary neurotrophic factors.

Full Text

The Full Text of this article is available as a PDF (778.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Muto Y., Hosoya N. Vitamin A transport in chicken plasma: isolation and characterization of retinol-binding protein (RBP), prealbumin (PA), and RBP--PA complex. J Lipid Res. 1975 May;16(3):200–210. [PubMed] [Google Scholar]
  2. Adler R., Lindsey J. D., Elsner C. L. Expression of cone-like properties by chick embryo neural retina cells in glial-free monolayer cultures. J Cell Biol. 1984 Sep;99(3):1173–1178. doi: 10.1083/jcb.99.3.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson C. W., Baum P. R., Gesteland R. F. Processing of adenovirus 2-induced proteins. J Virol. 1973 Aug;12(2):241–252. doi: 10.1128/jvi.12.2.241-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barbin G., Manthorpe M., Varon S. Purification of the chick eye ciliary neuronotrophic factor. J Neurochem. 1984 Nov;43(5):1468–1478. doi: 10.1111/j.1471-4159.1984.tb05410.x. [DOI] [PubMed] [Google Scholar]
  5. Blobel G. Intracellular protein topogenesis. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1496–1500. doi: 10.1073/pnas.77.3.1496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bunt-Milam A. H., Saari J. C. Immunocytochemical localization of two retinoid-binding proteins in vertebrate retina. J Cell Biol. 1983 Sep;97(3):703–712. doi: 10.1083/jcb.97.3.703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buskirk D. R., Thiery J. P., Rutishauser U., Edelman G. M. Antibodies to a neural cell adhesion molecule disrupt histogenesis in cultured chick retinae. Nature. 1980 Jun 12;285(5765):488–489. doi: 10.1038/285488a0. [DOI] [PubMed] [Google Scholar]
  8. Böhlen P., Schroeder R. High-sensitivity amino acid analysis: methodology for the determination of amino acid compositions with less than 100 picomoles of peptides. Anal Biochem. 1982 Oct;126(1):144–152. doi: 10.1016/0003-2697(82)90120-8. [DOI] [PubMed] [Google Scholar]
  9. Carnow T. B., Manthorpe M., Davis G. E., Varon S. Localized survival of ciliary ganglionic neurons identifies neuronotrophic factor bands on nitrocellulose blots. J Neurosci. 1985 Aug;5(8):1965–1971. doi: 10.1523/JNEUROSCI.05-08-01965.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Colantuoni V., Romano V., Bensi G., Santoro C., Costanzo F., Raugei G., Cortese R. Cloning and sequencing of a full length cDNA coding for human retinol-binding protein. Nucleic Acids Res. 1983 Nov 25;11(22):7769–7776. doi: 10.1093/nar/11.22.7769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cole G. J., Glaser L. A heparin-binding domain from N-CAM is involved in neural cell-substratum adhesion. J Cell Biol. 1986 Feb;102(2):403–412. doi: 10.1083/jcb.102.2.403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cole G. J., Glaser L. Cell-substratum adhesion in embryonic chick central nervous system is mediated by a 170,000-mol-wt neural-specific polypeptide. J Cell Biol. 1984 Nov;99(5):1605–1612. doi: 10.1083/jcb.99.5.1605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cole G. J., Glaser L. Identification of novel neural- and neural retina-specific antigens with a monoclonal antibody. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2260–2264. doi: 10.1073/pnas.81.7.2260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cole G. J., Glaser L. Inhibition of embryonic neural retina cell-substratum adhesion with a monoclonal antibody. J Biol Chem. 1984 Apr 10;259(7):4031–4034. [PubMed] [Google Scholar]
  15. Cole G. J., Schubert D., Glaser L. Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol. 1985 Apr;100(4):1192–1199. doi: 10.1083/jcb.100.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Collins F. Electrophoretic similarity of the ciliary ganglion survival factors from different tissues and species. Dev Biol. 1985 May;109(1):255–258. doi: 10.1016/0012-1606(85)90367-7. [DOI] [PubMed] [Google Scholar]
  17. Edelman G. M. Cell adhesion molecules. Science. 1983 Feb 4;219(4584):450–457. doi: 10.1126/science.6823544. [DOI] [PubMed] [Google Scholar]
  18. Esch F. S., Ling N. C., Böhlen P. Microisolation of neuropeptides. Methods Enzymol. 1983;103:72–89. doi: 10.1016/s0076-6879(83)03007-4. [DOI] [PubMed] [Google Scholar]
  19. Esch F. S. Polypeptide microsequence analysis with the commercially available gas-phase sequencer. Anal Biochem. 1984 Jan;136(1):39–47. doi: 10.1016/0003-2697(84)90305-1. [DOI] [PubMed] [Google Scholar]
  20. Koh S. W., Chader G. J. Elevation of intracellular cyclic AMP and stimulation of adenylate cyclase activity by vasoactive intestinal peptide and glucagon in the retinal pigment epithelium. J Neurochem. 1984 Dec;43(6):1522–1526. doi: 10.1111/j.1471-4159.1984.tb06072.x. [DOI] [PubMed] [Google Scholar]
  21. Lai Y. L., Wiggert B., Liu Y. P., Chader G. J. Interphotoreceptor retinol-binding proteins: possible transport vehicles between compartments of the retina. Nature. 1982 Aug 26;298(5877):848–849. doi: 10.1038/298848a0. [DOI] [PubMed] [Google Scholar]
  22. Li H. P., Sheffield J. B. Isolation and characterization of flat cells, a subpopulation of the embryonic chick retina. Tissue Cell. 1984;16(6):843–857. doi: 10.1016/0040-8166(84)90066-1. [DOI] [PubMed] [Google Scholar]
  23. Lilien J. E., Moscona A. A. Cell aggregation: its enhancement by a supernatant from cultures of homologous cells. Science. 1967 Jul 7;157(3784):70–72. doi: 10.1126/science.157.3784.70. [DOI] [PubMed] [Google Scholar]
  24. Nishi R., Berg D. K. Two components from eye tissue that differentially stimulate the growth and development of ciliary ganglion neurons in cell culture. J Neurosci. 1981 May;1(5):505–513. doi: 10.1523/JNEUROSCI.01-05-00505.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Schubert D., LaCorbiere M. Isolation of a cell-surface receptor for chick neural retina adherons. J Cell Biol. 1985 Jan;100(1):56–63. doi: 10.1083/jcb.100.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Schubert D., LaCorbiere M. Isolation of an adhesion-mediating protein from chick neural retina adherons. J Cell Biol. 1985 Sep;101(3):1071–1077. doi: 10.1083/jcb.101.3.1071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Schubert D., LaCorbiere M., Klier F. G., Birdwell C. A role for adherons in neural retina cell adhesion. J Cell Biol. 1983 Apr;96(4):990–998. doi: 10.1083/jcb.96.4.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Schubert D., LaCorbiere M., Klier F. G., Birdwell C. The structure and function of myoblast adherons. Cold Spring Harb Symp Quant Biol. 1983;48(Pt 2):539–549. doi: 10.1101/sqb.1983.048.01.058. [DOI] [PubMed] [Google Scholar]
  29. Sundelin J., Anundi H., Trägårdh L., Eriksson U., Lind P., Ronne H., Peterson P. A., Rask L. The primary structure of rat liver cellular retinol-binding protein. J Biol Chem. 1985 May 25;260(10):6488–6493. [PubMed] [Google Scholar]
  30. Sundelin J., Laurent B. C., Anundi H., Trägårdh L., Larhammar D., Björck L., Eriksson U., Akerström B., Jones A., Newcomer M. Amino acid sequence homologies between rabbit, rat, and human serum retinol-binding proteins. J Biol Chem. 1985 May 25;260(10):6472–6480. [PubMed] [Google Scholar]
  31. Takase S., Ong D. E., Chytil F. Cellular retinol-binding protein allows specific interaction of retinol with the nucleus in vitro. Proc Natl Acad Sci U S A. 1979 May;76(5):2204–2208. doi: 10.1073/pnas.76.5.2204. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES