Abstract
Structural studies of stationary principal bends and of definitive patterns of spontaneous microtubule sliding disruption permitted description of the bending axis in sea urchin sperm tail axonemes. Lytechinus pictus sperm were demembranated in a buffer containing Triton X-100 and EGTA. Subsequent resuspension in a reactivation buffer containing 0.4 mM CaCl2 and 1.0 mM MgATP2- resulted in quiescent, rather than motile, cells and each sperm tail axoneme took on an extreme, basal principal bend of 5.2 rad. Thereafter, such flagellar axonemes began to disrupt spontaneously into two subsets of microtubules by active sliding requiring ATP. Darkfield light microscopy demonstrated that subset "1" is composed of microtubules from the inside edge of the principal bend. Subset "2" is composed of microtubules from the outside edge of the principal bend and always scatters less light in darkfield than subset 1. Subset 2, which always slides in the proximal direction, relative to subset 1, results in a basal loop of microtubules, and the subset 2 loop is restricted to the bend plane during sliding disruption. Electron microscopy revealed that doublets 8, 9, 1, 2, 3 and the central pair comprise subset 1, and doublets 4, 5, the bridge, 6, and 7 comprise subset 2. The microtubules of isolated subset 2 are maintained in a circular arc in the absence of spoke-central pair interaction. Longitudinal sections show that the bending plane bisects the central pair. We therefore conclude that the bend plane passes through doublet 1 and the 5-6 bridge and that doublet 1 is at the inside edge of the principal bend. Experimental definition of the axis permits explicit discussion of the location of active axonemal components which result in Ca2+-induced stationary basal bends and explicit description of components responsible for alternating basal principal and reverse bends.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AFZELIUS B. Electron microscopy of the sperm tail; results obtained with a new fixative. J Biophys Biochem Cytol. 1959 Mar 25;5(2):269–278. doi: 10.1083/jcb.5.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Calcium-induced asymmetrical beating of triton-demembranated sea urchin sperm flagella. J Cell Biol. 1979 Aug;82(2):401–411. doi: 10.1083/jcb.82.2.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J. Cyclic AMP-dependent activation of sea urchin and tunicate sperm motility. Ann N Y Acad Sci. 1984;438:132–141. doi: 10.1111/j.1749-6632.1984.tb38282.x. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J. Elastase digestion of demembranated sperm flagella. Science. 1980 Mar 21;207(4437):1365–1367. doi: 10.1126/science.6898364. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Josslin R., Bobrow L. Calcium ion regulation of flagellar beat symmetry in reactivated sea urchin spermatozoa. Biochem Biophys Res Commun. 1974 Jun 4;58(3):795–800. doi: 10.1016/s0006-291x(74)80487-0. [DOI] [PubMed] [Google Scholar]
- Brokaw C. J., Luck D. J., Huang B. Analysis of the movement of Chlamydomonas flagella:" the function of the radial-spoke system is revealed by comparison of wild-type and mutant flagella. J Cell Biol. 1982 Mar;92(3):722–732. doi: 10.1083/jcb.92.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brokaw C. J., Nagayama S. M. Modulation of the asymmetry of sea urchin sperm flagellar bending by calmodulin. J Cell Biol. 1985 Jun;100(6):1875–1883. doi: 10.1083/jcb.100.6.1875. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIBBONS I. R. A method for obtaining serial sections of known orientation from single spermatozoa. J Cell Biol. 1963 Mar;16:626–629. doi: 10.1083/jcb.16.3.626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GIBBONS I. R. Structural asymmetry in cilia and flagella. Nature. 1961 Jun 17;190:1128–1129. doi: 10.1038/1901128a0. [DOI] [PubMed] [Google Scholar]
- GIBBONS I. R. The relationship between the fine structure and direction of beat in gill cilia of a lamellibranch mollusc. J Biophys Biochem Cytol. 1961 Oct;11:179–205. doi: 10.1083/jcb.11.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H. Effects of organic solvents on flagellar asymmetry and quiescence in sea urchin sperm. J Cell Sci. 1982 Apr;54:115–135. doi: 10.1242/jcs.54.1.115. [DOI] [PubMed] [Google Scholar]
- Gibbons B. H., Gibbons I. R. Calcium-induced quiescence in reactivated sea urchin sperm. J Cell Biol. 1980 Jan;84(1):13–27. doi: 10.1083/jcb.84.1.13. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H. Intermittent swimming in live sea urchin sperm. J Cell Biol. 1980 Jan;84(1):1–12. doi: 10.1083/jcb.84.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons B. H. Reactivation of sperm flagella: properties of microtubules-mediated motility. Methods Cell Biol. 1982;25(Pt B):253–271. [PubMed] [Google Scholar]
- Gibbons I. R. Cilia and flagella of eukaryotes. J Cell Biol. 1981 Dec;91(3 Pt 2):107s–124s. doi: 10.1083/jcb.91.3.107s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibbons I. R., Gibbons B. H. Transient flagellar waveforms during intermittent swimming in sea urchin sperm. I. Wave parameters. J Muscle Res Cell Motil. 1980 Mar;1(1):31–59. doi: 10.1007/BF00711924. [DOI] [PubMed] [Google Scholar]
- Gibbons I. R. The molecular basis of flagellar motility in sea urchin spermatozoa. Soc Gen Physiol Ser. 1975;30:207–232. [PubMed] [Google Scholar]
- Gibbons I. R. Transient flagellar waveforms during intermittent swimming in sea urchin sperm. II. Analysis of tubule sliding. J Muscle Res Cell Motil. 1981 Mar;2(1):83–130. doi: 10.1007/BF00712063. [DOI] [PubMed] [Google Scholar]
- Goldstein S. F. Asymmetric waveforms in echinoderm sperm flagella. J Exp Biol. 1977 Dec;71:157–170. doi: 10.1242/jeb.71.1.157. [DOI] [PubMed] [Google Scholar]
- Goldstein S. F. Form of developing bends in reactivated sperm flagella. J Exp Biol. 1976 Feb;64(1):173–184. doi: 10.1242/jeb.64.1.173. [DOI] [PubMed] [Google Scholar]
- Goldstein S. F. Starting transients in sea urchin sperm flagella. J Cell Biol. 1979 Jan;80(1):61–68. doi: 10.1083/jcb.80.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoops H. J., Witman G. B. Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J Cell Biol. 1983 Sep;97(3):902–908. doi: 10.1083/jcb.97.3.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miki-Noumura T., Kamiya R. Conformational change in the outer doublet microtubules from sea urchin sperm flagella. J Cell Biol. 1979 May;81(2):355–360. doi: 10.1083/jcb.81.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okuno M. Inhibition and relaxation of sea urchin sperm flagella by vanadate. J Cell Biol. 1980 Jun;85(3):712–725. doi: 10.1083/jcb.85.3.712. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olson G. E., Linck R. W. Observations of the structural components of flagellar axonemes and central pair microtubules from rat sperm. J Ultrastruct Res. 1977 Oct;61(1):21–43. doi: 10.1016/s0022-5320(77)90004-1. [DOI] [PubMed] [Google Scholar]
- Omoto C. K., Kung C. Rotation and twist of the central-pair microtubules in the cilia of Paramecium. J Cell Biol. 1980 Oct;87(1):33–46. doi: 10.1083/jcb.87.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sale W. S., Goodenough U. W., Heuser J. E. The substructure of isolated and in situ outer dynein arms of sea urchin sperm flagella. J Cell Biol. 1985 Oct;101(4):1400–1412. doi: 10.1083/jcb.101.4.1400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sale W. S., Satir P. Direction of active sliding of microtubules in Tetrahymena cilia. Proc Natl Acad Sci U S A. 1977 May;74(5):2045–2049. doi: 10.1073/pnas.74.5.2045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sale W. S. Study of the properties of MgATP2--induced stationary bends in demembranated sea urchin sperm. Cell Motil. 1985;5(3):209–224. doi: 10.1002/cm.970050304. [DOI] [PubMed] [Google Scholar]
- Satir P., Sale W. S. Tails of Tetrahymena. J Protozool. 1977 Nov;24(4):498–501. doi: 10.1111/j.1550-7408.1977.tb00999.x. [DOI] [PubMed] [Google Scholar]
- Satir P. Studies on cilia. 3. Further studies on the cilium tip and a "sliding filament" model of ciliary motility. J Cell Biol. 1968 Oct;39(1):77–94. doi: 10.1083/jcb.39.1.77. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Segal R. A., Luck D. J. Phosphorylation in isolated Chlamydomonas axonemes: a phosphoprotein may mediate the Ca2+-dependent photophobic response. J Cell Biol. 1985 Nov;101(5 Pt 1):1702–1712. doi: 10.1083/jcb.101.5.1702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shingyoji C., Murakami A., Takahashi K. Local reactivation of Triton-extracted flagella by iontophoretic application of ATP. Nature. 1977 Jan 20;265(5591):269–270. doi: 10.1038/265269a0. [DOI] [PubMed] [Google Scholar]
- Tamm S. L., Tamm S. Alternate patterns of doublet microtubule sliding in ATP-disintegrated macrocilia of the ctenophore Beroë. J Cell Biol. 1984 Oct;99(4 Pt 1):1364–1371. doi: 10.1083/jcb.99.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wais-Steider J., Satir P. Effect of vanadate on gill cilia: switching mechanism in ciliary beat. J Supramol Struct. 1979;11(3):339–347. doi: 10.1002/jss.400110309. [DOI] [PubMed] [Google Scholar]
- Zobel C. R. Effect of solution composition and proteolysis on the conformation of axonemal components. J Cell Biol. 1973 Dec;59(3):573–594. doi: 10.1083/jcb.59.3.573. [DOI] [PMC free article] [PubMed] [Google Scholar]