Abstract
Anaphase in dividing guard mother cells of Allium cepa and stamen hair cells of Tradescantia virginiana consists almost entirely of chromosome- to-pole motion, or anaphase A. Little or no separation of the poles (anaphase B) occurs. Anaphase is reversibly blocked at any point by azide or dinitrophenol, with chromosome motion ceasing 1-10 min after application of the drugs. Motion can be stopped and restarted several times in the same cell. Prometaphase, metaphase, and cytoplasmic streaming are also arrested. Carbonyl cyanide m-chlorophenyl hydrazone also stops anaphase, but its effects are not reversible. Whereas the spindle collapses in the presence of colchicine, the chromosomes seem to "freeze" in place when cells are exposed to respiratory inhibitors. Electron microscope examination of dividing guard mother cells fixed during azide and dinitrophenol treatment reveals that spindle microtubules are still present. Our results show that chromosome-to- pole motion in these cells is sensitive to proton ionophores and electron transport inhibitors. They therefore disagree with recent reports that anaphase A does not require a continuous supply of energy. It is possible, however, that anaphase does not directly use ATP but instead depends on the energy of chemical and/or electrical gradients generated by cellular membranes.
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMOORE J. E. NON-IDENTICAL MECHANISMS OF MITOTIC ARREST BY RESPIRATORY INHIBITORS IN PEA ROOT TIPS AND SEA URCHIN EGGS. J Cell Biol. 1963 Sep;18:555–567. doi: 10.1083/jcb.18.3.555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- AMOORE J. E. Participation of a non-respiratory ferrous complex during mitosis in roots. J Cell Biol. 1962 Jun;13:373–381. doi: 10.1083/jcb.13.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barham S. S., Brinkley B. R. Action of rotenone and related respiratory inhibitors on mammalian cell division. 1 Cell kinetics and biochemical aspects. Cytobios. 1976;15(58-59):85–96. [PubMed] [Google Scholar]
- Barham S. S., Brinkley B. R. Action of rotenone and related respiratory inhibitors on mammalian cell division. 2 Ultrastructural studies. Cytobios. 1976;15(58-59):97–109. [PubMed] [Google Scholar]
- Bershadsky A. D., Gelfand V. I. ATP-dependent regulation of cytoplasmic microtubule disassembly. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3610–3613. doi: 10.1073/pnas.78.6.3610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bershadsky A. D., Gelfand V. I. Role of ATP in the regulation of stability of cytoskeletal structures. Cell Biol Int Rep. 1983 Mar;7(3):173–187. doi: 10.1016/0309-1651(83)90218-7. [DOI] [PubMed] [Google Scholar]
- Binari L. L., Racusen R. H. Membrane-associated ATPases in isolated secretory vesicles. Plant Physiol. 1983 Mar;71(3):594–597. doi: 10.1104/pp.71.3.594. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cande W. Z. Creatine kinase role in anaphase chromosome movement. Nature. 1983 Aug 11;304(5926):557–558. doi: 10.1038/304557a0. [DOI] [PubMed] [Google Scholar]
- Cande W. Z. Inhibition of spindle elongation in permeabilized mitotic cells by erythro-9-[3-(2-hydroxynonyl)] adenine. Nature. 1982 Feb 25;295(5851):700–701. doi: 10.1038/295700a0. [DOI] [PubMed] [Google Scholar]
- Cande W. Z. Nucleotide requirements for anaphase chromosome movements in permeabilized mitotic cells: anaphase B but not anaphase A requires ATP. Cell. 1982 Jan;28(1):15–22. doi: 10.1016/0092-8674(82)90370-1. [DOI] [PubMed] [Google Scholar]
- Cidon S., Ben-David H., Nelson N. ATP-driven proton fluxes across membranes of secretory organelles. J Biol Chem. 1983 Oct 10;258(19):11684–11688. [PubMed] [Google Scholar]
- Clark T. G., Rosenbaum J. L. Energy requirements for pigment aggregation in fundulus melanophores. Cell Motil. 1984;4(6):431–441. doi: 10.1002/cm.970040604. [DOI] [PubMed] [Google Scholar]
- De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Microtubule assembly in living cells after release from nocodazole block: the effects of metabolic inhibitors, taxol and PH. Cell Biol Int Rep. 1981 Sep;5(9):913–920. doi: 10.1016/0309-1651(81)90206-x. [DOI] [PubMed] [Google Scholar]
- Epel D. THE EFFECTS OF CARBON MONOXIDE INHIBITION ON ATP LEVEL AND THE RATE OF MITOSIS IN THE SEA URCHIN EGG. J Cell Biol. 1963 May 1;17(2):315–319. doi: 10.1083/jcb.17.2.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Glagolev A. N., Skulachev V. P. The proton pump is a molecular engine of motile bacteria. Nature. 1978 Mar 16;272(5650):280–282. doi: 10.1038/272280a0. [DOI] [PubMed] [Google Scholar]
- Goulbourne E. A., Jr, Greenberg E. P. Relationship between proton motive force and motility in Spirochaeta aurantia. J Bacteriol. 1980 Sep;143(3):1450–1457. doi: 10.1128/jb.143.3.1450-1457.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hepler P. K., Wolniak S. M. Membranes in the mitotic apparatus: their structure and function. Int Rev Cytol. 1984;90:169–238. doi: 10.1016/s0074-7696(08)61490-4. [DOI] [PubMed] [Google Scholar]
- Hollenbeck P. J., Bray D., Adams R. J. Effects of the uncoupling agents FCCP and CCCP on the saltatory movements of cytoplasmic organelles. Cell Biol Int Rep. 1985 Feb;9(2):193–199. doi: 10.1016/0309-1651(85)90094-3. [DOI] [PubMed] [Google Scholar]
- Inoué S., Ritter H., Jr Dynamics of mitotic spindle organization and function. Soc Gen Physiol Ser. 1975;30:3–30. [PubMed] [Google Scholar]
- Johnson R. G., Beers M. F., Scarpa A. H+ ATPase of chromaffin granules. Kinetics, regulation, and stoichiometry. J Biol Chem. 1982 Sep 25;257(18):10701–10707. [PubMed] [Google Scholar]
- Koons S. J., Eckert B. S., Zobel C. R. Immunofluorescence and inhibitor studies on creatine kinase and mitosis. Exp Cell Res. 1982 Aug;140(2):401–409. doi: 10.1016/0014-4827(82)90130-6. [DOI] [PubMed] [Google Scholar]
- Larsen S. H., Adler J., Gargus J. J., Hogg R. W. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1239–1243. doi: 10.1073/pnas.71.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Luby K. J., Porter K. R. The control of pigment migration in isolated erythrophores of Holocentrus ascensionis (Osbeck). I. Energy requirements. Cell. 1980 Aug;21(1):13–23. doi: 10.1016/0092-8674(80)90110-5. [DOI] [PubMed] [Google Scholar]
- MAZIA D. SYNTHETIC ACTIVITIES LEADING TO MITOSIS. J Cell Physiol. 1963 Oct;62:SUPPL1–SUPPL1:140. doi: 10.1002/jcp.1030620412. [DOI] [PubMed] [Google Scholar]
- Madeira V. M. Proton movements across the membranes of sarcoplasmic reticulum during the uptake of calcium ions. Arch Biochem Biophys. 1980 Apr 1;200(2):319–325. doi: 10.1016/0003-9861(80)90361-6. [DOI] [PubMed] [Google Scholar]
- Manson M. D., Tedesco P., Berg H. C., Harold F. M., Van der Drift C. A protonmotive force drives bacterial flagella. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3060–3064. doi: 10.1073/pnas.74.7.3060. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maro B., Bornens M. Reorganization of HeLa cell cytoskeleton induced by an uncoupler of oxidative phosphorylation. Nature. 1982 Jan 28;295(5847):334–336. doi: 10.1038/295334a0. [DOI] [PubMed] [Google Scholar]
- Marshall L. E., Himes R. H. Rotenone inhibition of tubulin self-assembly. Biochim Biophys Acta. 1978 Nov 1;543(4):590–594. doi: 10.1016/0304-4165(78)90315-x. [DOI] [PubMed] [Google Scholar]
- Meisner H. M., Sorensen L. Metaphase arrest of Chinese hamster cells with rotenone. Exp Cell Res. 1966 May;42(2):291–295. doi: 10.1016/0014-4827(66)90292-8. [DOI] [PubMed] [Google Scholar]
- Murphy D. B., Hiebsch R. R., Wallis K. T. Identity and Origin of the ATPase activity associated with neuronal microtubules. I. The ATPase activity is associated with membrane vesicles. J Cell Biol. 1983 May;96(5):1298–1305. doi: 10.1083/jcb.96.5.1298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Petzelt C. Biochemistry of the mitotic spindle. Int Rev Cytol. 1979;60:53–92. doi: 10.1016/s0074-7696(08)61259-0. [DOI] [PubMed] [Google Scholar]
- Pickett-Heaps J. D., Spurck T. P. Studies on kinetochore function in mitosis. II. The effects of metabolic inhibitors on mitosis and cytokinesis in the diatom Hantzschia amphioxys. Eur J Cell Biol. 1982 Aug;28(1):83–91. [PubMed] [Google Scholar]
- Pickett-Heaps J., Spurck T., Tippit D. Chromosome motion and the spindle matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):137s–143s. doi: 10.1083/jcb.99.1.137s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rieder C. L. The structure of the cold-stable kinetochore fiber in metaphase PtK1 cells. Chromosoma. 1981;84(1):145–158. doi: 10.1007/BF00293368. [DOI] [PubMed] [Google Scholar]
- Salmon E. D., Begg D. A. Functional implications of cold-stable microtubules in kinetochore fibers of insect spermatocytes during anaphase. J Cell Biol. 1980 Jun;85(3):853–865. doi: 10.1083/jcb.85.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salmon E. D., McKeel M., Hays T. Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine. J Cell Biol. 1984 Sep;99(3):1066–1075. doi: 10.1083/jcb.99.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawada N., Rebhun L. I. The effect of dinitrophenol and other phosphorylation uncouplers on the birefringence of the mitotic apparatus of marine eggs. Exp Cell Res. 1969 Apr;55(1):33–38. doi: 10.1016/0014-4827(69)90450-9. [DOI] [PubMed] [Google Scholar]
- Schliwa M. Mechanisms of intracellular organelle transport. Cell Muscle Motil. 1984;5:1-82,403-6. doi: 10.1007/978-1-4684-4592-3_1. [DOI] [PubMed] [Google Scholar]
- Zimniak P., Racker E. Electrogenicity of Ca2+ transport catalyzed by the Ca2+-ATPase from sarcoplasmic reticulum. J Biol Chem. 1978 Jul 10;253(13):4631–4637. [PubMed] [Google Scholar]
