Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Sep 1;103(3):755–766. doi: 10.1083/jcb.103.3.755

Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia

PMCID: PMC2114282  PMID: 3528172

Abstract

A tight junction-enriched membrane fraction has been used as immunogen to generate a monoclonal antiserum specific for this intercellular junction. Hybridomas were screened for their ability to both react on an immunoblot and localize to the junctional complex region on frozen sections of unfixed mouse liver. A stable hybridoma line has been isolated that secretes an antibody (R26.4C) that localizes in thin section images of isolated mouse liver plasma membranes to the points of membrane contact at the tight junction. This antibody recognizes a polypeptide of approximately 225,000 D, detectable in whole liver homogenates as well as in the tight junction-enriched membrane fraction. R26.4C localizes to the junctional complex region of a number of other epithelia, including colon, kidney, and testis, and to arterial endothelium, as assayed by immunofluorescent staining of cryostat sections of whole tissue. This antibody also stains the junctional complex region in confluent monolayers of the Madin-Darby canine kidney epithelial cell line. Immunoblot analysis of Madin-Darby canine kidney cells demonstrates the presence of a polypeptide similar in molecular weight to that detected in liver, suggesting that this protein is potentially a ubiquitous component of all mammalian tight junctions. The 225-kD tight junction-associated polypeptide is termed "ZO-1."

Full Text

The Full Text of this article is available as a PDF (5.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bartles J. R., Braiterman L. T., Hubbard A. L. Endogenous and exogenous domain markers of the rat hepatocyte plasma membrane. J Cell Biol. 1985 Apr;100(4):1126–1138. doi: 10.1083/jcb.100.4.1126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Behrens J., Birchmeier W., Goodman S. L., Imhof B. A. Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: mechanistic aspects and identification of the antigen as a component related to uvomorulin. J Cell Biol. 1985 Oct;101(4):1307–1315. doi: 10.1083/jcb.101.4.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bennett V., Baines A. J., Davis J. Q. Ankyrin and synapsin: spectrin-binding proteins associated with brain membranes. J Cell Biochem. 1985;29(2):157–169. doi: 10.1002/jcb.240290210. [DOI] [PubMed] [Google Scholar]
  4. Bennett V. The membrane skeleton of human erythrocytes and its implications for more complex cells. Annu Rev Biochem. 1985;54:273–304. doi: 10.1146/annurev.bi.54.070185.001421. [DOI] [PubMed] [Google Scholar]
  5. Bentzel C. J., Hainau B., Ho S., Hui S. W., Edelman A., Anagnostopoulos T., Benedetti E. L. Cytoplasmic regulation of tight-junction permeability: effect of plant cytokinins. Am J Physiol. 1980 Sep;239(3):C75–C89. doi: 10.1152/ajpcell.1980.239.3.C75. [DOI] [PubMed] [Google Scholar]
  6. Boller K., Vestweber D., Kemler R. Cell-adhesion molecule uvomorulin is localized in the intermediate junctions of adult intestinal epithelial cells. J Cell Biol. 1985 Jan;100(1):327–332. doi: 10.1083/jcb.100.1.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Burgess D. R. Reactivation of intestinal epithelial cell brush border motility: ATP-dependent contraction via a terminal web contractile ring. J Cell Biol. 1982 Dec;95(3):853–863. doi: 10.1083/jcb.95.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cereijido M., Meza I., Martínez-Palomo A. Occluding junctions in cultured epithelial monolayers. Am J Physiol. 1981 Mar;240(3):C96–102. doi: 10.1152/ajpcell.1981.240.3.C96. [DOI] [PubMed] [Google Scholar]
  9. Cereijido M., Robbins E. S., Dolan W. J., Rotunno C. A., Sabatini D. D. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol. 1978 Jun;77(3):853–880. doi: 10.1083/jcb.77.3.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cook J., Hou E., Hou Y., Cairo A., Doyle D. Establishment of plasma membrane domains in hepatocytes. I. Characterization and localization to the bile canaliculus of three antigens externally oriented in the plasma membrane. J Cell Biol. 1983 Dec;97(6):1823–1833. doi: 10.1083/jcb.97.6.1823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Edelman G. M. Cell adhesion and the molecular processes of morphogenesis. Annu Rev Biochem. 1985;54:135–169. doi: 10.1146/annurev.bi.54.070185.001031. [DOI] [PubMed] [Google Scholar]
  12. Friend D. S., Gilula N. B. Variations in tight and gap junctions in mammalian tissues. J Cell Biol. 1972 Jun;53(3):758–776. doi: 10.1083/jcb.53.3.758. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Geiger B., Dutton A. H., Tokuyasu K. T., Singer S. J. Immunoelectron microscope studies of membrane-microfilament interactions: distributions of alpha-actinin, tropomyosin, and vinculin in intestinal epithelial brush border and chicken gizzard smooth muscle cells. J Cell Biol. 1981 Dec;91(3 Pt 1):614–628. doi: 10.1083/jcb.91.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Goodenough D. A., Revel J. P. A fine structural analysis of intercellular junctions in the mouse liver. J Cell Biol. 1970 May;45(2):272–290. doi: 10.1083/jcb.45.2.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Griepp E. B., Dolan W. J., Robbins E. S., Sabatini D. D. Participation of plasma membrane proteins in the formation of tight junctions by cultured epithelial cells. J Cell Biol. 1983 Mar;96(3):693–702. doi: 10.1083/jcb.96.3.693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gumbiner B., Simons K. A functional assay for proteins involved in establishing an epithelial occluding barrier: identification of a uvomorulin-like polypeptide. J Cell Biol. 1986 Feb;102(2):457–468. doi: 10.1083/jcb.102.2.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  18. Hubbard A. L., Bartles J. R., Braiterman L. T. Identification of rat hepatocyte plasma membrane proteins using monoclonal antibodies. J Cell Biol. 1985 Apr;100(4):1115–1125. doi: 10.1083/jcb.100.4.1115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hubbard A. L., Ma A. Isolation of rat hepatocyte plasma membranes. II. Identification of membrane-associated cytoskeletal proteins. J Cell Biol. 1983 Jan;96(1):230–239. doi: 10.1083/jcb.96.1.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hubbard A. L., Wall D. A., Ma A. Isolation of rat hepatocyte plasma membranes. I. Presence of the three major domains. J Cell Biol. 1983 Jan;96(1):217–229. doi: 10.1083/jcb.96.1.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Imhof B. A., Vollmers H. P., Goodman S. L., Birchmeier W. Cell-cell interaction and polarity of epithelial cells: specific perturbation using a monoclonal antibody. Cell. 1983 Dec;35(3 Pt 2):667–675. doi: 10.1016/0092-8674(83)90099-5. [DOI] [PubMed] [Google Scholar]
  22. Kachar B., Reese T. S. Evidence for the lipidic nature of tight junction strands. Nature. 1982 Apr 1;296(5856):464–466. doi: 10.1038/296464a0. [DOI] [PubMed] [Google Scholar]
  23. Keller T. C., 3rd, Mooseker M. S. Ca++-calmodulin-dependent phosphorylation of myosin, and its role in brush border contraction in vitro. J Cell Biol. 1982 Dec;95(3):943–959. doi: 10.1083/jcb.95.3.943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  25. Matsudaira P. T., Burgess D. R. Identification and organization of the components in the isolated microvillus cytoskeleton. J Cell Biol. 1979 Dec;83(3):667–673. doi: 10.1083/jcb.83.3.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Meier P. J., Sztul E. S., Reuben A., Boyer J. L. Structural and functional polarity of canalicular and basolateral plasma membrane vesicles isolated in high yield from rat liver. J Cell Biol. 1984 Mar;98(3):991–1000. doi: 10.1083/jcb.98.3.991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Meza I., Ibarra G., Sabanero M., Martínez-Palomo A., Cereijido M. Occluding junctions and cytoskeletal components in a cultured transporting epithelium. J Cell Biol. 1980 Dec;87(3 Pt 1):746–754. doi: 10.1083/jcb.87.3.746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Meza I., Sabanero M., Stefani E., Cereijido M. Occluding junctions in MDCK cells: modulation of transepithelial permeability by the cytoskeleton. J Cell Biochem. 1982;18(4):407–421. doi: 10.1002/jcb.1982.240180403. [DOI] [PubMed] [Google Scholar]
  29. Misfeldt D. S., Hamamoto S. T., Pitelka D. R. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1212–1216. doi: 10.1073/pnas.73.4.1212. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Paul D. L., Goodenough D. A. Preparation, characterization, and localization of antisera against bovine MP26, an integral protein from lens fiber plasma membrane. J Cell Biol. 1983 Mar;96(3):625–632. doi: 10.1083/jcb.96.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pinto da Silva P., Kachar B. On tight-junction structure. Cell. 1982 Mar;28(3):441–450. doi: 10.1016/0092-8674(82)90198-2. [DOI] [PubMed] [Google Scholar]
  32. Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane. II. Ultrastructural localization of leucine aminopeptidase to the bile canalicular domain of isolated rat liver plasma membranes. J Cell Biol. 1984 Apr;98(4):1488–1496. doi: 10.1083/jcb.98.4.1488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane. III. Isolation of bile canalicular membrane by immunoadsorption. J Cell Biol. 1984 Apr;98(4):1497–1504. doi: 10.1083/jcb.98.4.1497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Roman L. M., Hubbard A. L. A domain-specific marker for the hepatocyte plasma membrane: localization of leucine aminopeptidase to the bile canalicular domain. J Cell Biol. 1983 Jun;96(6):1548–1558. doi: 10.1083/jcb.96.6.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Staehelin L. A. Further observations on the fine structure of freeze-cleaved tight junctions. J Cell Sci. 1973 Nov;13(3):763–786. doi: 10.1242/jcs.13.3.763. [DOI] [PubMed] [Google Scholar]
  36. Staehelin L. A., Mukherjee T. M., Williams A. W. Freeze-etch appearance of the tight junctions in the epithelium of small and large intestine of mice. Protoplasma. 1969;67(2):165–184. doi: 10.1007/BF01248737. [DOI] [PubMed] [Google Scholar]
  37. Stevenson B. R., Goodenough D. A. Zonulae occludentes in junctional complex-enriched fractions from mouse liver: preliminary morphological and biochemical characterization. J Cell Biol. 1984 Apr;98(4):1209–1221. doi: 10.1083/jcb.98.4.1209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. van Deurs B., Koehler J. K. Tight junctions in the choroid plexus epithelium. A freeze-fracture study including complementary replicas. J Cell Biol. 1979 Mar;80(3):662–673. doi: 10.1083/jcb.80.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES