Abstract
To detect changes in the extent of tubulin polymerization in cultured cells, we have developed a radioactive antibody binding assay that can be used to quantitate total cytoskeletal tubulin or specific antigenic subsets of polymerized tubulin. Fibroblastic cells, grown to confluence in multiwell plates, were permeabilized and extracted with 0.5% Triton X-100 in a microtubule-stabilizing buffer. These extracted cytoskeletons were then fixed and incubated with translationally radiolabeled monoclonal antitubulin antibody (Ab 1-1.1), an IgM antibody specific for the beta subunit of tubulin. Specific binding of Ab 1-1.1 to the cytoskeletons was saturable and of a single apparent affinity. All specific binding was blocked by preincubation of the radiolabeled antibody with excess purified brain tubulin. Specific Ab 1- 1.1 binding appeared to represent binding to cytoskeletal tubulin inasmuch as: pretreatment of cells with colchicine decreased Ab 1-1.1 binding in a dose-dependent manner which correlated with the amount of polymerized tubulin visualized in parallel cultures by indirect immunofluorescence, taxol pretreatment alone caused an increase in Ab 1- 1.1 binding and prevented in a dose-dependent manner the colchicine- induced decrease in antibody binding, in cells pretreated with colcemid and returned to fresh medium, Ab 1-1.1 binding decreased and recovered in parallel with the depolymerization and regrowth of microtubules in these cells, and comparison of maximal antibody binding per cell between primary mouse embryo, 3T3, and human foreskin fibroblasts correlated with immunofluorescence visualization of microtubules in these cells. Thus, this assay can be used to measure relative changes in the level of polymerized cytoskeletal tubulin. Moreover, by Scatchard-type analysis of the binding data it is possible to estimate the total number of antibody binding sites per cell. Therefore, depending on the stoichiometry of antibody binding, this type of assay may be used for quantitating total cytoskeletal tubulin, specific antigenic subsets of cytoskeletal tubulin, or other cytoskeletal proteins.
Full Text
The Full Text of this article is available as a PDF (2.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Asai D. J., Brokaw C. J., Harmon R. C., Wilson L. Monoclonal antibodies to tubulin and their effects on the movement of reactivated sea urchin spermatozoa. Prog Clin Biol Res. 1982;80:175–180. doi: 10.1002/cm.970020733. [DOI] [PubMed] [Google Scholar]
- Asai D. J., Brokaw C. J., Thompson W. C., Wilson L. Two different monoclonal antibodies to alpha-tubulin inhibit the bending of reactivated sea urchin spermatozoa. Cell Motil. 1982;2(6):599–614. doi: 10.1002/cm.970020608. [DOI] [PubMed] [Google Scholar]
- Baraona E., Finkelman F., Matsuda Y., Lieber C. S. A modified colchicine-binding assay for the measurement of total and microtubule-derived tubulin in rat liver. Anal Biochem. 1983 Apr 15;130(2):302–310. doi: 10.1016/0003-2697(83)90592-4. [DOI] [PubMed] [Google Scholar]
- Beertsen W., Heersche J. N., Aubin J. E. Free and polymerized tubulin in cultured bone cells and Chinese hamster ovary cells: the influence of cold and hormones. J Cell Biol. 1982 Nov;95(2 Pt 1):387–393. doi: 10.1083/jcb.95.2.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bouvet J. P., Pires R., Pillot J. A modified gel filtration technique producing an unusual exclusion volume of IgM: a simple way of preparing monoclonal IgM. J Immunol Methods. 1984 Feb 10;66(2):299–305. doi: 10.1016/0022-1759(84)90341-7. [DOI] [PubMed] [Google Scholar]
- Brinkley B. R., Fuller E. M., Highfield D. P. Cytoplasmic microtubules in normal and transformed cells in culture: analysis by tubulin antibody immunofluorescence. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4981–4985. doi: 10.1073/pnas.72.12.4981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burnette W. N. "Western blotting": electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem. 1981 Apr;112(2):195–203. doi: 10.1016/0003-2697(81)90281-5. [DOI] [PubMed] [Google Scholar]
- Carney D. H., Glenn K. C., Cunningham D. D. Conditions which affect initiation of animal cell division by trypsin and thrombin. J Cell Physiol. 1978 Apr;95(1):13–22. doi: 10.1002/jcp.1040950103. [DOI] [PubMed] [Google Scholar]
- Crossin K. L., Carney D. H. Evidence that microtubule depolymerization early in the cell cycle is sufficient to initiate DNA synthesis. Cell. 1981 Jan;23(1):61–71. doi: 10.1016/0092-8674(81)90270-1. [DOI] [PubMed] [Google Scholar]
- Crossin K. L., Carney D. H. Microtubule stabilization by taxol inhibits initiation of DNA synthesis by thrombin and by epidermal growth factor. Cell. 1981 Dec;27(2 Pt 1):341–350. doi: 10.1016/0092-8674(81)90417-7. [DOI] [PubMed] [Google Scholar]
- Edelman G. M., Yahara I. Temperature-sensitive changes in surface modulating assemblies of fibroblasts transformed by mutants of Rous sarcoma virus. Proc Natl Acad Sci U S A. 1976 Jun;73(6):2047–2051. doi: 10.1073/pnas.73.6.2047. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller G. M., Brinkley B. R. Structure and control of assembly of cytoplasmic microtubules in normal and transformed cells. J Supramol Struct. 1976;5(4):497(349)–514(366). doi: 10.1002/jss.400050407. [DOI] [PubMed] [Google Scholar]
- Gozes I., Littauer U. Z., Geiger B., Fuchs S. Immunochemical determination of tubulin. FEBS Lett. 1977 Jan 15;73(1):109–114. [PubMed] [Google Scholar]
- Hiller G., Weber K. Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell. 1978 Aug;14(4):795–804. doi: 10.1016/0092-8674(78)90335-5. [DOI] [PubMed] [Google Scholar]
- Inoué S., Sato H. Cell motility by labile association of molecules. The nature of mitotic spindle fibers and their role in chromosome movement. J Gen Physiol. 1967 Jul;50(6 Suppl):259–292. [PMC free article] [PubMed] [Google Scholar]
- Joniau M., de Brabander M., de Mey J., Hoebeke J. Quantitative determination of tubulin by radioimmunoassay. FEBS Lett. 1977 Jun 15;78(2):307–312. doi: 10.1016/0014-5793(77)80330-x. [DOI] [PubMed] [Google Scholar]
- Kowit J. D., Fulton C. Purification and properties of flagellar outer doublet tubulin from Naegleria gruberi and a radioimmune assay for tubulin. J Biol Chem. 1974 Jun 10;249(11):3638–3646. [PubMed] [Google Scholar]
- Masurovsky E. B., Peterson E. R., Crain S. M., Horwitz S. B. Microtubule arrays in taxol-treated mouse dorsal root ganglion-spinal cord cultures. Brain Res. 1981 Aug 3;217(2):392–398. doi: 10.1016/0006-8993(81)90017-2. [DOI] [PubMed] [Google Scholar]
- Maurice M., Feldmann G., Bellon B., Druet P. Increase in polymerized liver tubulin during stimulation of hepatic plasma protein secretion in the rat. Biochem Biophys Res Commun. 1980 Nov 28;97(2):355–363. doi: 10.1016/0006-291x(80)90272-7. [DOI] [PubMed] [Google Scholar]
- McKeithan T. W., Rosenbaum J. L. The biochemistry of microtubules. A review. Cell Muscle Motil. 1984;5:255–288. doi: 10.1007/978-1-4684-4592-3_7. [DOI] [PubMed] [Google Scholar]
- Miller C. L., Fuseler J. W., Brinkley B. R. Cytoplasmic microtubules in transformed mouse x nontransformed human cell hybrids: correlation with in vitro growth. Cell. 1977 Sep;12(1):319–331. doi: 10.1016/0092-8674(77)90210-0. [DOI] [PubMed] [Google Scholar]
- Morgan J. L., Seeds N. W. Tubulin constancy during morphological differentiation of mouse neuroblastoma cells. J Cell Biol. 1975 Oct;67(1):136–145. doi: 10.1083/jcb.67.1.136. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Olmsted J. B. Tubulin pools in differentiating neuroblastoma cells. J Cell Biol. 1981 Jun;89(3):418–423. doi: 10.1083/jcb.89.3.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ostlund R. E., Jr, Leung J. T., Hajek S. V. Biochemical determination of tubulin-microtubule equilibrium in cultured cells. Anal Biochem. 1979 Jul 1;96(1):155–164. doi: 10.1016/0003-2697(79)90568-2. [DOI] [PubMed] [Google Scholar]
- Parness J., Asnes C. F., Horwitz S. B. Taxol binds differentially to flagellar outer doublets and their reassembled microtubules. Cell Motil. 1983;3(2):123–130. doi: 10.1002/cm.970030203. [DOI] [PubMed] [Google Scholar]
- Parness J., Horwitz S. B. Taxol binds to polymerized tubulin in vitro. J Cell Biol. 1981 Nov;91(2 Pt 1):479–487. doi: 10.1083/jcb.91.2.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pipeleers D. G., Pipeleers-Marichal M. A., Kipnis D. M. Physiological regulation of total tubulin and polymerized tubulin in tissues. J Cell Biol. 1977 Aug;74(2):351–357. doi: 10.1083/jcb.74.2.351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pipeleers D. G., Pipeleers-Marichal M. A., Sherline P., Kipnis D. M. A sensitive method for measuring polymerized and depolymerized forms of tubulin in tissues. J Cell Biol. 1977 Aug;74(2):341–350. doi: 10.1083/jcb.74.2.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Reaven E. P., Cheng Y., Miller M. D. Quantitative analysis of tubulin and microtubule compartments in isolated rat hepatocytes. J Cell Biol. 1977 Dec;75(3):731–742. doi: 10.1083/jcb.75.3.731. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rubin R. W., Weiss G. D. Direct biochemical measurements of microtubule assembly and disassembly in Chinese hamster ovary cells. The effect of intercellular contact, cold, D2O, and N6,O2'-dibutyryl cyclic adenosine monophosphate. J Cell Biol. 1975 Jan;64(1):42–53. doi: 10.1083/jcb.64.1.42. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Samuel J. L., Schwartz K., Lompre A. M., Delcayre C., Marotte F., Swynghedauw B., Rappaport L. Immunological quantitation and localization of tubulin in adult rat heart isolated myocytes. Eur J Cell Biol. 1983 Jul;31(1):99–106. [PubMed] [Google Scholar]
- Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sheir-Neiss G., Lai M. H., Morris N. R. Identification of a gene for beta-tubulin in Aspergillus nidulans. Cell. 1978 Oct;15(2):639–647. doi: 10.1016/0092-8674(78)90032-6. [DOI] [PubMed] [Google Scholar]
- Thompson W. C., Asai D. J., Carney D. H. Heterogeneity among microtubules of the cytoplasmic microtubule complex detected by a monoclonal antibody to alpha tubulin. J Cell Biol. 1984 Mar;98(3):1017–1025. doi: 10.1083/jcb.98.3.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van De Water L., 3rd, Guttman S. D., Gorovsky M. A., Olmsted J. B. Production of antisera and radioimmunoassays for tubulin. Methods Cell Biol. 1982;24:79–96. doi: 10.1016/s0091-679x(08)60649-4. [DOI] [PubMed] [Google Scholar]
- Waterhouse P. D., Anderson P. J., Brown D. L. Increases in microtubule assembly and in tubulin content in mitogenically stimulated mouse splenic T lymphocytes. Exp Cell Res. 1983 Apr 1;144(2):367–376. doi: 10.1016/0014-4827(83)90416-0. [DOI] [PubMed] [Google Scholar]
- Wilson L., Bamburg J. R., Mizel S. B., Grisham L. M., Creswell K. M. Interaction of drugs with microtubule proteins. Fed Proc. 1974 Feb;33(2):158–166. [PubMed] [Google Scholar]
