Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Sep 1;103(3):917–927. doi: 10.1083/jcb.103.3.917

Microtubule reassembly from nucleating fragments during the regrowth of amputated neurites

PMCID: PMC2114289  PMID: 3745275

Abstract

We have proposed that stable microtubule (MT) fragments that resist depolymerization may serve as nucleating elements for the local control of MT dynamics in the axon (Heidemann, S. R., M. A. Hamborg, S. J. Thomas, B. Song, S. Lindley, and D. Chu, 1984, J. Cell Biol., 99:1289- 1295). Here we report evidence that supports this proposal in studies on the role of MTs in the regrowth of neurites from the distal segments of amputated chick sensory neurites. Amputated neurites collapse to "beads" of axoplasm that rapidly regrow (Shaw, G., and D. Bray, 1977, Exp. Cell Res., 104:55-62). We examined both unarrested regrowth and regrowth after MT disassembly by either cold (-5 degrees C for 2 h) or nocodazole (0.1 microgram/ml for 15-20 min). In all these cases regrowth occurred at 3.5-4.5 micron/min with no delay times other than the times to reach 37 degrees C or rinse out the nocodazole. Electron micrographs of untreated beads show many MTs of varying lengths, while those of cold- and nocodazole-treated beads show markedly shorter MTs. The robust regrowth of neurites from beads containing only very short MTs argues against unfurling of intact MTs from the bead into the growing neurite. Electron micrographs of cold-treated beads lysed under conditions that cause substantial MT depolymerization in untreated intact neurites show persistent MT fragments similar to those in unlysed cold-treated beads. We interpret this as evidence that the MT fragments in cold-treated beads are somehow distinct from the majority of the MT mass that had depolymerized. Collapsed neurites treated with a higher dose of nocodazole (1.0 microgram/ml for 15-20 min) were completely devoid of MTs and regrew only after a 15-20 min delay in two cases but never regrew in 11 other cases. We found that MTs did not return in beads treated with 1.0 microgram/ml nocodazole even 30 min after removal of the drug. It was unlikely that the inability of these beads to reassemble MTs was due to incomplete removal of nocodazole in that a much higher dose (20 micrograms/ml nocodazole) could be quickly rinsed from intact neurites. Beads treated with 1.0 microgram/ml nocodazole could, however, be stimulated to reassemble MTs and regrow neurites by treatment with taxol. We conclude that the immediate, robust regrowth of neurites from collapsed beads of axoplasm requires MT nucleation sites to support MT reassembly.(ABSTRACT TRUNCATED AT 400 WORDS)

Full Text

The Full Text of this article is available as a PDF (5.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen C., Borisy G. G. Structural polarity and directional growth of microtubules of Chlamydomonas flagella. J Mol Biol. 1974 Dec 5;90(2):381–402. doi: 10.1016/0022-2836(74)90381-7. [DOI] [PubMed] [Google Scholar]
  2. Black M. M., Cochran J. M., Kurdyla J. T. Solubility properties of neuronal tubulin: evidence for labile and stable microtubules. Brain Res. 1984 Mar 19;295(2):255–263. doi: 10.1016/0006-8993(84)90974-0. [DOI] [PubMed] [Google Scholar]
  3. Black M. M., Greene L. A. Changes in the colchicine susceptibility of microtubules associated with neurite outgrowth: studies with nerve growth factor-responsive PC12 pheochromocytoma cells. J Cell Biol. 1982 Nov;95(2 Pt 1):379–386. doi: 10.1083/jcb.95.2.379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brady S. T., Tytell M., Lasek R. J. Axonal tubulin and axonal microtubules: biochemical evidence for cold stability. J Cell Biol. 1984 Nov;99(5):1716–1724. doi: 10.1083/jcb.99.5.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bray D. Branching patterns of individual sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):702–712. doi: 10.1083/jcb.56.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bray D., Gilbert D. Cytoskeletal elements in neurons. Annu Rev Neurosci. 1981;4:505–523. doi: 10.1146/annurev.ne.04.030181.002445. [DOI] [PubMed] [Google Scholar]
  7. Bunge M. B. Fine structure of nerve fibers and growth cones of isolated sympathetic neurons in culture. J Cell Biol. 1973 Mar;56(3):713–735. doi: 10.1083/jcb.56.3.713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Burton L. E., Wilson W. H., Shooter E. M. Nerve growth factor in mouse saliva. Rapid isolation procedures for and characterization of 7 S nerve growth factor. J Biol Chem. 1978 Nov 10;253(21):7807–7812. [PubMed] [Google Scholar]
  9. Campenot R. B. Local control of neurite development by nerve growth factor. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4516–4519. doi: 10.1073/pnas.74.10.4516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Cande W. Z., Snyder J., Smith D., Summers K., McIntosh J. R. A functional mitotic spindle prepared from mammalian cells in culture. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1559–1563. doi: 10.1073/pnas.71.4.1559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. De Brabander M., Geuens G., Van De Veire R., Thoneé F., Aerts F., Desplenter L., De Cree J., Borgers M. The effects of R U7934 (NSC 238159), a new antimicrotubular substance, on the ultrastructure of neoplastic cells in vivo. Eur J Cancer. 1977 Jun;13(6):511–528. doi: 10.1016/0014-2964(77)90113-x. [DOI] [PubMed] [Google Scholar]
  12. Heidemann S. R., Hamborg M. A., Thomas S. J., Song B., Lindley S., Chu D. Spatial organization of axonal microtubules. J Cell Biol. 1984 Oct;99(4 Pt 1):1289–1295. doi: 10.1083/jcb.99.4.1289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Heidemann S. R., Landers J. M., Hamborg M. A. Polarity orientation of axonal microtubules. J Cell Biol. 1981 Dec;91(3 Pt 1):661–665. doi: 10.1083/jcb.91.3.661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hesketh J. E. Differences in polypeptide composition and enzyme activity between cold-stable and cold-labile microtubules and study of microtubule alkaline phosphatase activity. FEBS Lett. 1984 Apr 24;169(2):313–318. doi: 10.1016/0014-5793(84)80341-5. [DOI] [PubMed] [Google Scholar]
  15. Horie H., Takenaka T., Kaiho M. Effects of disruption of microtubules on translocation of particles and morphology in tissue cultured neurites. Brain Res. 1983 Dec 12;288(1-2):85–93. doi: 10.1016/0006-8993(83)90083-5. [DOI] [PubMed] [Google Scholar]
  16. Job D., Rauch C. T., Fischer E. H., Margolis R. L. Recycling of cold-stable microtubules: evidence that cold stability is due to substoichiometric polymer blocks. Biochemistry. 1982 Feb 2;21(3):509–515. doi: 10.1021/bi00532a015. [DOI] [PubMed] [Google Scholar]
  17. Johnson K. A., Borisy G. G. Kinetic analysis of microtubule self-assembly in vitro. J Mol Biol. 1977 Nov 25;117(1):1–31. doi: 10.1016/0022-2836(77)90020-1. [DOI] [PubMed] [Google Scholar]
  18. Johnston R. N., Wessells N. K. Regulation of the elongating nerve fiber. Curr Top Dev Biol. 1980;16:165–206. doi: 10.1016/s0070-2153(08)60156-8. [DOI] [PubMed] [Google Scholar]
  19. Jones D. H., Gray E. G., Barron J. Cold stable microtubules in brain studied in fractions and slices. J Neurocytol. 1980 Aug;9(4):493–504. doi: 10.1007/BF01204838. [DOI] [PubMed] [Google Scholar]
  20. Joshi H. C., Baas P., Chu D. T., Heidemann S. R. The cytoskeleton of neurites after microtubule depolymerization. Exp Cell Res. 1986 Mar;163(1):233–245. doi: 10.1016/0014-4827(86)90576-8. [DOI] [PubMed] [Google Scholar]
  21. Kirschner M. W. Implications of treadmilling for the stability and polarity of actin and tubulin polymers in vivo. J Cell Biol. 1980 Jul;86(1):330–334. doi: 10.1083/jcb.86.1.330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Landis S. C. Neuronal growth cones. Annu Rev Physiol. 1983;45:567–580. doi: 10.1146/annurev.ph.45.030183.003031. [DOI] [PubMed] [Google Scholar]
  23. Lasek R. J. The dynamic ordering of neuronal cytoskeletons. Neurosci Res Program Bull. 1981 Feb;19(1):7–32. [PubMed] [Google Scholar]
  24. Lasek R. J. Translocation of the neuronal cytoskeleton and axonal locomotion. Philos Trans R Soc Lond B Biol Sci. 1982 Nov 4;299(1095):313–327. doi: 10.1098/rstb.1982.0135. [DOI] [PubMed] [Google Scholar]
  25. Letourneau P. C. Cell-to-substratum adhesion and guidance of axonal elongation. Dev Biol. 1975 May;44(1):92–101. doi: 10.1016/0012-1606(75)90379-6. [DOI] [PubMed] [Google Scholar]
  26. Letourneau P. C., Ressler A. H. Inhibition of neurite initiation and growth by taxol. J Cell Biol. 1984 Apr;98(4):1355–1362. doi: 10.1083/jcb.98.4.1355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Lyser K. M. An electron-microscopic study of centrioles in differentiating motor neuroblasts. J Embryol Exp Morphol. 1968 Nov;20(3):343–354. [PubMed] [Google Scholar]
  28. Mitchison T., Kirschner M. Dynamic instability of microtubule growth. Nature. 1984 Nov 15;312(5991):237–242. doi: 10.1038/312237a0. [DOI] [PubMed] [Google Scholar]
  29. Morris J. R., Lasek R. J. Monomer-polymer equilibria in the axon: direct measurement of tubulin and actin as polymer and monomer in axoplasm. J Cell Biol. 1984 Jun;98(6):2064–2076. doi: 10.1083/jcb.98.6.2064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Morris J. R., Lasek R. J. Stable polymers of the axonal cytoskeleton: the axoplasmic ghost. J Cell Biol. 1982 Jan;92(1):192–198. doi: 10.1083/jcb.92.1.192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Nicklas R. B., Kubai D. F., Hays T. S. Spindle microtubules and their mechanical associations after micromanipulation in anaphase. J Cell Biol. 1982 Oct;95(1):91–104. doi: 10.1083/jcb.95.1.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Olmsted J. B., Marcum J. M., Johnson K. A., Allen C., Borisy G. G. Microtuble assembly: some possible regulatory mechanisms. J Supramol Struct. 1974;2(2-4):429–450. doi: 10.1002/jss.400020230. [DOI] [PubMed] [Google Scholar]
  33. Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
  34. Sharp G. A., Weber K., Osborn M. Centriole number and process formation in established neuroblastoma cells and primary dorsal root ganglion neurones. Eur J Cell Biol. 1982 Nov;29(1):97–103. [PubMed] [Google Scholar]
  35. Shaw G., Bray D. Movement and extension of isolated growth cones. Exp Cell Res. 1977 Jan;104(1):55–62. doi: 10.1016/0014-4827(77)90068-4. [DOI] [PubMed] [Google Scholar]
  36. Snyder J. A., Hamilton B. T., Mullins J. M. Loss of mitotic centrosomal microtubule initiation capacity at the metaphase-anaphase transition. Eur J Cell Biol. 1982 Jun;27(2):191–199. [PubMed] [Google Scholar]
  37. Solomon F., Magendantz M., Salzman A. Identification with cellular microtubules of one of the co-assemlbing microtubule-associated proteins. Cell. 1979 Oct;18(2):431–438. doi: 10.1016/0092-8674(79)90062-x. [DOI] [PubMed] [Google Scholar]
  38. Solomon F. Organizing microtubules in the cytoplasm. Cell. 1980 Nov;22(2 Pt 2):331–332. doi: 10.1016/0092-8674(80)90343-8. [DOI] [PubMed] [Google Scholar]
  39. Webb B. C., Wilson L. Cold-stable microtubules from brain. Biochemistry. 1980 Apr 29;19(9):1993–2001. doi: 10.1021/bi00550a041. [DOI] [PubMed] [Google Scholar]
  40. Wessells N. K., Johnson S. R., Nuttall R. P. Axon initiation and growth cone regeneration in cultured motor neurons. Exp Cell Res. 1978 Dec;117(2):335–345. doi: 10.1016/0014-4827(78)90147-7. [DOI] [PubMed] [Google Scholar]
  41. Yamada K. M., Spooner B. S., Wessells N. K. Axon growth: roles of microfilaments and microtubules. Proc Natl Acad Sci U S A. 1970 Aug;66(4):1206–1212. doi: 10.1073/pnas.66.4.1206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Yamada K. M., Spooner B. S., Wessells N. K. Ultrastructure and function of growth cones and axons of cultured nerve cells. J Cell Biol. 1971 Jun;49(3):614–635. doi: 10.1083/jcb.49.3.614. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Zenker W., Hohberg E. A-alpha-nerve-fiber: number of neurotubules in the stem fibre and in the terminal branches. J Neurocytol. 1973 Jun;2(2):143–148. doi: 10.1007/BF01474716. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES