Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Sep 1;103(3):867–874. doi: 10.1083/jcb.103.3.867

Toxoplasma modifies macrophage phagosomes by secretion of a vesicular network rich in surface proteins

PMCID: PMC2114290  PMID: 3528173

Abstract

Modification of macrophage phagosomes begins shortly after formation as Toxoplasma cells secrete membranous vesicles that form a reticulate network within the vacuole. The Toxoplasma-modified compartments then resist normal endocytic processing and digestion. We have used the pronounced Ca++-dependent stability of the intraphagosomal membrane (IPM) network to purify and characterize the structural proteins of this assembly. In addition to the structural matrix, Toxoplasma secretes a discrete set of soluble proteins, including a newly described 22-kD calcium-binding protein. The IPM network adheres to intact Toxoplasma cells after host cell lysis in the presence of 1 mM Ca++; however, the network readily disperses in calcium-free buffer and was purified as vesicles that sedimented at 100,000 g. Purified IPM vesicles were specifically recognized by immune sera from mice with chronic Toxoplasma infection and consisted primarily of a 30-kD protein when analyzed by SDS PAGE. IPM network proteins share a major antigenic component located on the surface of extracellular Toxoplasma cells as shown by immunoperoxidase electron microscopy using a polyclonal antibody prepared against the IPM vesicles. Moreover, in Toxoplasma- infected macrophages, anti-IMP antibody confirmed that the extensive IPM array contains proteins also found on the Toxoplasma cell surface. Our results indicate the IMP network represents a unique structural modification of the phagosome comprised in part of Toxoplasma surface proteins.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aikawa M., Komata Y., Asai T., Midorikawa O. Transmission and scanning electron microscopy of host cell entry by Toxoplasma gondii. Am J Pathol. 1977 May;87(2):285–296. [PMC free article] [PubMed] [Google Scholar]
  2. Allen R. C. Reduced, radical, and excited state oxygen in leukocyte microbicidal activity. Front Biol. 1979;48:197–233. [PubMed] [Google Scholar]
  3. Bannister L. H., Butcher G. A., Mitchell G. H. Recent advances in understanding the invasion of erythrocytes by merozoites of Plasmodium knowlesi. Bull World Health Organ. 1977;55(2-3):163–169. [PMC free article] [PubMed] [Google Scholar]
  4. Conley F. K., Jenkins K. A. Immunohistological study of the anatomic relationship of toxoplasma antigens to the inflammatory response in the brains of mice chronically infected with Toxoplasma gondii. Infect Immun. 1981 Mar;31(3):1184–1192. doi: 10.1128/iai.31.3.1184-1192.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Courtoy P. J., Picton D. H., Farquhar M. G. Resolution and limitations of the immunoperoxidase procedure in the localization of extracellular matrix antigens. J Histochem Cytochem. 1983 Jul;31(7):945–951. doi: 10.1177/31.7.6304184. [DOI] [PubMed] [Google Scholar]
  6. Endo T., Pelster B., Piekarski G. Infection of murine peritoneal macrophages with Toxoplasma gondii exposed to ultraviolet light. Z Parasitenkd. 1981;65(2):121–129. doi: 10.1007/BF00929177. [DOI] [PubMed] [Google Scholar]
  7. Forbes M. S., Plantholt B. A., Sperelakis N. Cytochemical staining procedures selective for sarcotubular systems of muscle: modifications and applications. J Ultrastruct Res. 1977 Sep;60(3):306–327. doi: 10.1016/s0022-5320(77)80016-6. [DOI] [PubMed] [Google Scholar]
  8. Geisow M. J., D'Arcy Hart P., Young M. R. Temporal changes of lysosome and phagosome pH during phagolysosome formation in macrophages: studies by fluorescence spectroscopy. J Cell Biol. 1981 Jun;89(3):645–652. doi: 10.1083/jcb.89.3.645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goodman M., Pechère J. F., Haiech J., Demaille J. G. Evolutionary diversification of structure and function in the family of intracellular calcium-binding proteins. J Mol Evol. 1979 Nov;13(4):331–352. doi: 10.1007/BF01731373. [DOI] [PubMed] [Google Scholar]
  10. Handman E., Goding J. W., Remington J. S. Detection and characterization of membrane antigens of Toxoplasma gondii. J Immunol. 1980 Jun;124(6):2578–2583. [PubMed] [Google Scholar]
  11. Jensen J. B. Ultrastructure of the invasion of Eimeria magna sporozoites into cultured cells. J Protozool. 1975 Aug;22(3):411–415. doi: 10.1111/j.1550-7408.1975.tb05193.x. [DOI] [PubMed] [Google Scholar]
  12. Jones T. C., Hirsch J. G. The interaction between Toxoplasma gondii and mammalian cells. II. The absence of lysosomal fusion with phagocytic vacuoles containing living parasites. J Exp Med. 1972 Nov 1;136(5):1173–1194. doi: 10.1084/jem.136.5.1173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jones T. C., Yeh S., Hirsch J. G. The interaction between Toxoplasma gondii and mammalian cells. I. Mechanism of entry and intracellular fate of the parasite. J Exp Med. 1972 Nov 1;136(5):1157–1172. doi: 10.1084/jem.136.5.1157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kasper L. H., Crabb J. H., Pfefferkorn E. R. Purification of a major membrane protein of Toxoplasma gondii by immunoabsorption with a monoclonal antibody. J Immunol. 1983 May;130(5):2407–2412. [PubMed] [Google Scholar]
  15. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  16. Maruyama K., Mikawa T., Ebashi S. Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. J Biochem. 1984 Feb;95(2):511–519. doi: 10.1093/oxfordjournals.jbchem.a134633. [DOI] [PubMed] [Google Scholar]
  17. Meis J. F., Verhave J. P., Jap P. H., Sinden R. E., Meuwissen J. H. Malaria parasites--discovery of the early liver form. 1983 Mar 31-Apr 6Nature. 302(5907):424–426. doi: 10.1038/302424a0. [DOI] [PubMed] [Google Scholar]
  18. Nichols B. A., Chiappino M. L., O'Connor G. R. Secretion from the rhoptries of Toxoplasma gondii during host-cell invasion. J Ultrastruct Res. 1983 Apr;83(1):85–98. doi: 10.1016/s0022-5320(83)90067-9. [DOI] [PubMed] [Google Scholar]
  19. Nichols B. A., O'Connor G. R. Penetration of mouse peritoneal macrophages by the protozoon Toxoplasma gondii. New evidence for active invasion and phagocytosis. Lab Invest. 1981 Apr;44(4):324–335. [PubMed] [Google Scholar]
  20. Remington J. S., Cavanaugh E. N. Isolation of the encysted form of Toxoplasma gondii from human skeletal muscle and brain. N Engl J Med. 1965 Dec 9;273(24):1308–1310. doi: 10.1056/NEJM196512092732404. [DOI] [PubMed] [Google Scholar]
  21. Ruskin J., Remington J. S. Toxoplasmosis in the compromised host. Ann Intern Med. 1976 Feb;84(2):193–199. doi: 10.7326/0003-4819-84-2-193. [DOI] [PubMed] [Google Scholar]
  22. Sheffield H. G., Melton M. L. Effect of pyrimethamine and sulfadiazine on the fine structure and multiplication of Toxoplasma gondii in cell cultures. J Parasitol. 1975 Aug;61(4):704–712. [PubMed] [Google Scholar]
  23. Sibley L. D., Krahenbuhl J. L., Weidner E. Lymphokine activation of J774G8 cells and mouse peritoneal macrophages challenged with Toxoplasma gondii. Infect Immun. 1985 Sep;49(3):760–764. doi: 10.1128/iai.49.3.760-764.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sibley L. D., Weidner E., Krahenbuhl J. L. Phagosome acidification blocked by intracellular Toxoplasma gondii. 1985 May 30-Jun 5Nature. 315(6018):416–419. doi: 10.1038/315416a0. [DOI] [PubMed] [Google Scholar]
  25. Simionescu N., Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976 Sep;70(3):608–621. doi: 10.1083/jcb.70.3.608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Stewart M. J., Schulman S., Vanderberg J. P. Rhoptry secretion of membranous whorls by Plasmodium berghei sporozoites. J Protozool. 1985 May;32(2):280–283. doi: 10.1111/j.1550-7408.1985.tb03051.x. [DOI] [PubMed] [Google Scholar]
  27. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Weidner E. Interactions between Encephalitozoon cuniculi and macrophages. Parasitophorous vacuole growth and the absence of lysosomal fusion. Z Parasitenkd. 1975 Aug 21;47(1):1–9. doi: 10.1007/BF00418060. [DOI] [PubMed] [Google Scholar]
  29. Werk R. How does Toxoplasma gondii enter host cells? Rev Infect Dis. 1985 Jul-Aug;7(4):449–457. doi: 10.1093/clinids/7.4.449. [DOI] [PubMed] [Google Scholar]
  30. Wilson C. B., Tsai V., Remington J. S. Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J Exp Med. 1980 Feb 1;151(2):328–346. doi: 10.1084/jem.151.2.328. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES