Abstract
We have examined the adhesion of primary Sertoli cells to a seminiferous tubule basement membrane (STBM) preparation in vitro. The STBM isolation procedure (Watanabe, T.K., L.J. Hansen, N.K. Reddy, Y.S. Kanwar, and J.K. Reddy, 1984, Cancer Res., 44:5361-5368) yields segments of STBM that retain their histotypic form in both three- dimensional tubular geometry and ultrastructural appearance. The STBM sleeves contain two laminae: a thick, inner basal lamina that was formed in vivo between Sertoli cells and peritubular myoid cells; and a thinner, outer basal lamina that was formed between myoid cells and sinusoidal endothelial cells. Characterization by immunofluorescence and SDS PAGE revealed that the isolated STBM retained fibronectin, laminin, and putative type IV collagen among its many components. When the STBM sleeves were gently shaken with an enriched fraction of primary Sertoli cells, the Sertoli cells bound preferentially to the lumenal basal lamina at the ends of the STBM sleeves. Few Sertoli cells bound to either the outer basal lamina of the STBM sleeves or to vascular extracellular matrix material which contaminated the STBM preparation. 3T3 cells, in contrast, bound to all surfaces of the STBM sleeves. Pretreatment of the STBM sleeves with proteases, 0.1 M Na metaperiodate, 4 M guanidine HCl, or heating to 80 degrees-90 degrees C inhibited lumenal Sertoli cell binding, but binding was not inhibited by chondroitinase ABC, heparinase, hyaluronidase, or 4 M NaCl. The lumenal Sertoli cell binding occurred in the presence or absence of added soluble laminin, but not fibronectin. The addition of soluble laminin, but not fibronectin, restored random binding of Sertoli cells to trypsinized STBM sleeves. Our in vitro model system indicates that Sertoli cells recognize differences in two basal laminae produced in vivo on either side of myoid cells.
Full Text
The Full Text of this article is available as a PDF (4.7 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abrahamson D. R. Origin of the glomerular basement membrane visualized after in vivo labeling of laminin in newborn rat kidneys. J Cell Biol. 1985 Jun;100(6):1988–2000. doi: 10.1083/jcb.100.6.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aplin J. D., Campbell S., Foden L. J. Adhesion of human amnion epithelial cells to extracellular matrix. Evidence for multiple mechanisms. Exp Cell Res. 1984 Aug;153(2):425–438. doi: 10.1016/0014-4827(84)90611-6. [DOI] [PubMed] [Google Scholar]
- Bellvé A. R., Cavicchia J. C., Millette C. F., O'Brien D. A., Bhatnagar Y. M., Dym M. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol. 1977 Jul;74(1):68–85. doi: 10.1083/jcb.74.1.68. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bissell M. J., Hall H. G., Parry G. How does the extracellular matrix direct gene expression? J Theor Biol. 1982 Nov 7;99(1):31–68. doi: 10.1016/0022-5193(82)90388-5. [DOI] [PubMed] [Google Scholar]
- Cole G. J., Schubert D., Glaser L. Cell-substratum adhesion in chick neural retina depends upon protein-heparan sulfate interactions. J Cell Biol. 1985 Apr;100(4):1192–1199. doi: 10.1083/jcb.100.4.1192. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dym M., Fawcett D. W. Further observations on the numbers of spermatogonia, spermatocytes, and spermatids connected by intercellular bridges in the mammalian testis. Biol Reprod. 1971 Apr;4(2):195–215. doi: 10.1093/biolreprod/4.2.195. [DOI] [PubMed] [Google Scholar]
- Fridman R., Fuks Z., Ovadia H., Vlodavsky I. Differential structural requirements for the induction of cell attachment, proliferation and differentiation by the extracellular matrix. Exp Cell Res. 1985 Mar;157(1):181–194. doi: 10.1016/0014-4827(85)90161-2. [DOI] [PubMed] [Google Scholar]
- Greenburg G., Gospodarowicz D. Inactivation of a basement membrane component responsible for cell proliferation but not for cell attachment. Exp Cell Res. 1982 Jul;140(1):1–14. doi: 10.1016/0014-4827(82)90149-5. [DOI] [PubMed] [Google Scholar]
- Hay E. D. Extracellular matrix. J Cell Biol. 1981 Dec;91(3 Pt 2):205s–223s. doi: 10.1083/jcb.91.3.205s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hermo L., Clermont Y. Light cells within the limiting membrane of rat seminiferous tubules. Am J Anat. 1976 Apr;145(4):467–483. doi: 10.1002/aja.1001450406. [DOI] [PubMed] [Google Scholar]
- Johansson S., Kjellén L., Hök M., Timpl R. Substrate adhesion of rat hepatocytes: a comparison of laminin and fibronectin as attachment proteins. J Cell Biol. 1981 Jul;90(1):260–264. doi: 10.1083/jcb.90.1.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kleinman H. K., Klebe R. J., Martin G. R. Role of collagenous matrices in the adhesion and growth of cells. J Cell Biol. 1981 Mar;88(3):473–485. doi: 10.1083/jcb.88.3.473. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Linsenmayer T. F., Gibney E., Fitch J. M., Gross J., Mayne R. Thermal stability of the helical structure of type IV collagen within basement membranes in situ: determination with a conformation-dependent monoclonal antibody. J Cell Biol. 1984 Oct;99(4 Pt 1):1405–1409. doi: 10.1083/jcb.99.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pierschbacher M. D., Hayman E. G., Ruoslahti E. Location of the cell-attachment site in fibronectin with monoclonal antibodies and proteolytic fragments of the molecule. Cell. 1981 Oct;26(2 Pt 2):259–267. doi: 10.1016/0092-8674(81)90308-1. [DOI] [PubMed] [Google Scholar]
- Reid L., Morrow B., Jubinsky P., Schwartz E., Gatmaitan Z. Regulation of growth and differentiation of epithelial cells by hormones, growth factors, and substrates of extracellular matrix. Ann N Y Acad Sci. 1981;372:354–370. doi: 10.1111/j.1749-6632.1981.tb15488.x. [DOI] [PubMed] [Google Scholar]
- Rojkind M., Gatmaitan Z., Mackensen S., Giambrone M. A., Ponce P., Reid L. M. Connective tissue biomatrix: its isolation and utilization for long-term cultures of normal rat hepatocytes. J Cell Biol. 1980 Oct;87(1):255–263. doi: 10.1083/jcb.87.1.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Romrell L. J., Bellvé A. R., Fawcett D. W. Separation of mouse spermatogenic cells by sedimentation velocity. A morphological characterization. Dev Biol. 1976 Mar;49(1):119–131. doi: 10.1016/0012-1606(76)90262-1. [DOI] [PubMed] [Google Scholar]
- Sariola H., Timpl R., von der Mark K., Mayne R., Fitch J. M., Linsenmayer T. F., Ekblom P. Dual origin of glomerular basement membrane. Dev Biol. 1984 Jan;101(1):86–96. doi: 10.1016/0012-1606(84)90119-2. [DOI] [PubMed] [Google Scholar]
- Skinner M. K., Tung P. S., Fritz I. B. Cooperativity between Sertoli cells and testicular peritubular cells in the production and deposition of extracellular matrix components. J Cell Biol. 1985 Jun;100(6):1941–1947. doi: 10.1083/jcb.100.6.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tung P. S., Fritz I. B. Extracellular matrix promotes rat Sertoli cell histotypic expression in vitro. Biol Reprod. 1984 Feb;30(1):213–229. doi: 10.1095/biolreprod30.1.213. [DOI] [PubMed] [Google Scholar]
- Tung P. S., Skinner M. K., Fritz I. B. Fibronectin synthesis is a marker for peritubular cell contaminants in Sertoli cell-enriched cultures. Biol Reprod. 1984 Feb;30(1):199–211. doi: 10.1095/biolreprod30.1.199. [DOI] [PubMed] [Google Scholar]
- Turley E. A. Proteoglycans and cell adhesion. Their putative role during tumorigenesis. Cancer Metastasis Rev. 1984;3(4):325–339. doi: 10.1007/BF00051458. [DOI] [PubMed] [Google Scholar]
- Watanabe T. K., Hansen L. J., Reddy N. K., Kanwar Y. S., Reddy J. K. Differentiation of pancreatic acinar carcinoma cells cultured on rat testicular seminiferous tubular basement membranes. Cancer Res. 1984 Nov;44(11):5361–5368. [PubMed] [Google Scholar]
- Yamada K. M. Cell surface interactions with extracellular materials. Annu Rev Biochem. 1983;52:761–799. doi: 10.1146/annurev.bi.52.070183.003553. [DOI] [PubMed] [Google Scholar]