Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Sep 1;103(3):887–893. doi: 10.1083/jcb.103.3.887

Nerve growth factor action is mediated by cyclic AMP- and Ca+2/phospholipid-dependent protein kinases

PMCID: PMC2114293  PMID: 2875079

Abstract

Nerve growth factor (NGF) mediates the phosphorylation of tyrosine hydroxylase in PC12 cells on two distinct peptide fragments, separable by two-dimensional tryptic phosphopeptide mapping (phosphopeptides T1 and T3). Phorbol diester derivatives capable of activating Ca+2/phospholipid-dependent protein kinase (C-kinase) cause a specific phosphorylation of peptide T3 in a dose-dependent, saturable manner. Derivatives of the endogenous C-kinase activator diacylglycerol, also cause the phosphorylation of tyrosine hydroxylase on peptide T3. The C- kinase inhibitors chlorpromazine and trifluoperazine inhibit the phorbol diester stimulated phosphorylation of site T3 in a dose- dependent manner. These agents inhibit the phosphorylation of T3 in response to NGF, but have no effect on NGF's ability to cause T1 phosphorylation. In a PC12 mutant deficient in cAMP-dependent protein kinase activity, NGF mediates the phosphorylation of tyrosine hydroxylase on peptide T3 but not on T1. We conclude that NGF mediates the activation of both the cAMP-dependent protein kinase and the C- kinase to phosphorylate substrate proteins. These kinases can act independently to phosphorylate tyrosine hydroxylase, each at a different site, and each of which results in the enzyme activation. A molecular framework is thus provided for events underlying NGF action.

Full Text

The Full Text of this article is available as a PDF (1.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albert K. A., Helmer-Matyjek E., Nairn A. C., Müller T. H., Haycock J. W., Greene L. A., Goldstein M., Greengard P. Calcium/phospholipid-dependent protein kinase (protein kinase C) phosphorylates and activates tyrosine hydroxylase. Proc Natl Acad Sci U S A. 1984 Dec;81(24):7713–7717. doi: 10.1073/pnas.81.24.7713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aloe L., Levi-Montalcini R. Nerve growth factor-induced transformation of immature chromaffin cells in vivo into sympathetic neurons: effect of antiserum to nerve growth factor. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1246–1250. doi: 10.1073/pnas.76.3.1246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson C. W., Baum P. R., Gesteland R. F. Processing of adenovirus 2-induced proteins. J Virol. 1973 Aug;12(2):241–252. doi: 10.1128/jvi.12.2.241-252.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bar-Sagi D., Feramisco J. R. Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell. 1985 Oct;42(3):841–848. doi: 10.1016/0092-8674(85)90280-6. [DOI] [PubMed] [Google Scholar]
  5. Castagna M., Takai Y., Kaibuchi K., Sano K., Kikkawa U., Nishizuka Y. Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem. 1982 Jul 10;257(13):7847–7851. [PubMed] [Google Scholar]
  6. Conn P. M., Ganong B. R., Ebeling J., Staley D., Neidel J. E., Bell R. M. Diacylglycerols release LH: structure-activity relations reveal a role for protein kinase C. Biochem Biophys Res Commun. 1985 Jan 16;126(1):532–539. doi: 10.1016/0006-291x(85)90638-2. [DOI] [PubMed] [Google Scholar]
  7. Greene L. A., Seeley P. J., Rukenstein A., DiPiazza M., Howard A. Rapid activation of tyrosine hydroxylase in response to nerve growth factor. J Neurochem. 1984 Jun;42(6):1728–1734. doi: 10.1111/j.1471-4159.1984.tb12764.x. [DOI] [PubMed] [Google Scholar]
  8. Greene L. A., Shooter E. M. The nerve growth factor: biochemistry, synthesis, and mechanism of action. Annu Rev Neurosci. 1980;3:353–402. doi: 10.1146/annurev.ne.03.030180.002033. [DOI] [PubMed] [Google Scholar]
  9. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hagag N., Halegoua S., Viola M. Inhibition of growth factor-induced differentiation of PC12 cells by microinjection of antibody to ras p21. Nature. 1986 Feb 20;319(6055):680–682. doi: 10.1038/319680a0. [DOI] [PubMed] [Google Scholar]
  11. Halegoua S., Patrick J. Nerve growth factor mediates phosphorylation of specific proteins. Cell. 1980 Nov;22(2 Pt 2):571–581. doi: 10.1016/0092-8674(80)90367-0. [DOI] [PubMed] [Google Scholar]
  12. Haycock J. W., Meligeni J. A., Bennett W. F., Waymire J. C. Phosphorylation and activation of tyrosine hydroxylase mediate the acetylcholine-induced increase in catecholamine biosynthesis in adrenal chromaffin cells. J Biol Chem. 1982 Nov 10;257(21):12641–12648. [PubMed] [Google Scholar]
  13. Hunter T., Sefton B. M. Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1311–1315. doi: 10.1073/pnas.77.3.1311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Joh T. H., Park D. H., Reis D. J. Direct phosphorylation of brain tyrosine hydroxylase by cyclic AMP-dependent protein kinase: mechanism of enzyme activation. Proc Natl Acad Sci U S A. 1978 Oct;75(10):4744–4748. doi: 10.1073/pnas.75.10.4744. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaibuchi K., Takai Y., Sawamura M., Hoshijima M., Fujikura T., Nishizuka Y. Synergistic functions of protein phosphorylation and calcium mobilization in platelet activation. J Biol Chem. 1983 Jun 10;258(11):6701–6704. [PubMed] [Google Scholar]
  16. Kawahara Y., Takai Y., Minakuchi R., Sano K., Nishizuka Y. Phospholipid turnover as a possible transmembrane signal for protein phosphorylation during human platelet activation by thrombin. Biochem Biophys Res Commun. 1980 Nov 17;97(1):309–317. doi: 10.1016/s0006-291x(80)80169-0. [DOI] [PubMed] [Google Scholar]
  17. Kruijer W., Schubert D., Verma I. M. Induction of the proto-oncogene fos by nerve growth factor. Proc Natl Acad Sci U S A. 1985 Nov;82(21):7330–7334. doi: 10.1073/pnas.82.21.7330. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lakshmanan J. Nerve growth factor induced turnover of phosphatidylinositol in rat superior cervical ganglia. Biochem Biophys Res Commun. 1978 Jun 14;82(3):767–775. doi: 10.1016/0006-291x(78)90848-3. [DOI] [PubMed] [Google Scholar]
  19. Landreth G. E., Rieser G. D. Nerve growth factor- and epidermal growth factor-stimulated phosphorylation of a PC12 cytoskeletally associated protein in situ. J Cell Biol. 1985 Mar;100(3):677–683. doi: 10.1083/jcb.100.3.677. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  21. Levi-Montalcini R., Aloe L. Differentiating effects of murine nerve growth factor in the peripheral and central nervous systems of Xenopus laevis tadpoles. Proc Natl Acad Sci U S A. 1985 Oct;82(20):7111–7115. doi: 10.1073/pnas.82.20.7111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Levi-Montalcini R., Angeletti P. U. Nerve growth factor. Physiol Rev. 1968 Jul;48(3):534–569. doi: 10.1152/physrev.1968.48.3.534. [DOI] [PubMed] [Google Scholar]
  23. Martínez H. J., Dreyfus C. F., Jonakait G. M., Black I. B. Nerve growth factor promotes cholinergic development in brain striatal cultures. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7777–7781. doi: 10.1073/pnas.82.22.7777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. McTigue M., Cremins J., Halegoua S. Nerve growth factor and other agents mediate phosphorylation and activation of tyrosine hydroxylase. A convergence of multiple kinase activities. J Biol Chem. 1985 Jul 25;260(15):9047–9056. [PubMed] [Google Scholar]
  25. Mobley W. C., Schenker A., Shooter E. M. Characterization and isolation of proteolytically modified nerve growth factor. Biochemistry. 1976 Dec 14;15(25):5543–5552. doi: 10.1021/bi00670a019. [DOI] [PubMed] [Google Scholar]
  26. Mori T., Takai Y., Minakuchi R., Yu B., Nishizuka Y. Inhibitory action of chlorpromazine, dibucaine, and other phospholipid-interacting drugs on calcium-activated, phospholipid-dependent protein kinase. J Biol Chem. 1980 Sep 25;255(18):8378–8380. [PubMed] [Google Scholar]
  27. Nikodijevic B., Nikodijevic O., Yu M. Y., Pollard H., Guroff G. The effect of nerve growth factor on cycle AMP levels in superior cerival ganglia of the rat. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4769–4771. doi: 10.1073/pnas.72.12.4769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Noda M., Ko M., Ogura A., Liu D. G., Amano T., Takano T., Ikawa Y. Sarcoma viruses carrying ras oncogenes induce differentiation-associated properties in a neuronal cell line. Nature. 1985 Nov 7;318(6041):73–75. doi: 10.1038/318073a0. [DOI] [PubMed] [Google Scholar]
  29. Otani S., Matsui I., Kuramoto A., Morisawa S. Induction of ornithine decarboxylase in guinea-pig lymphocytes. Synergistic effect of diacylglycerol and calcium. Eur J Biochem. 1985 Feb 15;147(1):27–31. doi: 10.1111/j.1432-1033.1985.tb08713.x. [DOI] [PubMed] [Google Scholar]
  30. Pfenninger K. H., Johnson M. P. Nerve growth factor stimulates phospholipid methylation in growing neurites. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7797–7800. doi: 10.1073/pnas.78.12.7797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Race H. M., Wagner J. A. Nerve growth factor affects cyclic AMP metabolism, but not by directly stimulating adenylate cyclase activity. J Neurochem. 1985 May;44(5):1588–1592. doi: 10.1111/j.1471-4159.1985.tb08799.x. [DOI] [PubMed] [Google Scholar]
  32. Raese J. D., Edelman A. M., Makk G., Bruckwick E. A., Lovenberg W., Barchas J. D. Brain striatal tyrosine hydroxylase: activation of the enzyme by cyclic AMP-independent phosphorylation. Commun Psychopharmacol. 1979;3(5):295–301. [PubMed] [Google Scholar]
  33. Sawyer S. T., Cohen S. Enhancement of calcium uptake and phosphatidylinositol turnover by epidermal growth factor in A-431 cells. Biochemistry. 1981 Oct 13;20(21):6280–6286. doi: 10.1021/bi00524a057. [DOI] [PubMed] [Google Scholar]
  34. Schubert D., LaCorbiere M., Whitlock C., Stallcup W. Alterations in the surface properties of cells responsive to nerve growth factor. Nature. 1978 Jun 29;273(5665):718–723. doi: 10.1038/273718a0. [DOI] [PubMed] [Google Scholar]
  35. Seeley P. J., Rukenstein A., Connolly J. L., Greene L. A. Differential inhibition of nerve growth factor and epidermal growth factor effects on the PC12 pheochromocytoma line. J Cell Biol. 1984 Feb;98(2):417–426. doi: 10.1083/jcb.98.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Skaper S. D., Bottenstein J. E., Varon S. Effects of nerve growth factor on cyclic AMP levels in embryonic chick dorsal root ganglia following factor deprivation. J Neurochem. 1979 Jun;32(6):1845–1851. doi: 10.1111/j.1471-4159.1979.tb02299.x. [DOI] [PubMed] [Google Scholar]
  37. Traynor A. E., Schubert D., Allen W. R. Alterations of lipid metabolism in response to nerve growth factor. J Neurochem. 1982 Dec;39(6):1677–1683. doi: 10.1111/j.1471-4159.1982.tb08002.x. [DOI] [PubMed] [Google Scholar]
  38. Traynor A. E. The relationship between neurite extension and phospholipid metabolism in PC12 cells. Brain Res. 1984 Jun;316(2):205–210. [PubMed] [Google Scholar]
  39. VOGT M., DULBECCO R. Steps in the neoplastic transformation of hamster embryo cells by polyoma virus. Proc Natl Acad Sci U S A. 1963 Feb 15;49:171–179. doi: 10.1073/pnas.49.2.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Van Buskirk R., Corcoran T., Wagner J. A. Clonal variants of PC12 pheochromocytoma cells with defects in cAMP-dependent protein kinases induce ornithine decarboxylase in response to nerve growth factor but not to adenosine agonists. Mol Cell Biol. 1985 Aug;5(8):1984–1992. doi: 10.1128/mcb.5.8.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Vulliet P. R., Woodgett J. R., Ferrari S., Hardie D. G. Characterization of the sites phosphorylated on tyrosine hydroxylase by Ca2+ and phospholipid-dependent protein kinase, calmodulin-dependent multiprotein kinase and cyclic AMP-dependent protein kinase. FEBS Lett. 1985 Mar 25;182(2):335–339. doi: 10.1016/0014-5793(85)80328-8. [DOI] [PubMed] [Google Scholar]
  42. Werth D. K., Pastan I. Vinculin phosphorylation in response to calcium and phorbol esters in intact cells. J Biol Chem. 1984 Apr 25;259(8):5264–5270. [PubMed] [Google Scholar]
  43. Wise B. C., Glass D. B., Chou C. H., Raynor R. L., Katoh N., Schatzman R. C., Turner R. S., Kibler R. F., Kuo J. F. Phospholipid-sensitive Ca2+-dependent protein kinase from heart. II. Substrate specificity and inhibition by various agents. J Biol Chem. 1982 Jul 25;257(14):8489–8495. [PubMed] [Google Scholar]
  44. Yamauchi T., Fujisawa H. Tyrosine 3-monoxygenase is phosphorylated by Ca2+-, calmodulin-dependent protein kinase, followed by activation by activator protein. Biochem Biophys Res Commun. 1981 May 29;100(2):807–813. doi: 10.1016/s0006-291x(81)80246-x. [DOI] [PubMed] [Google Scholar]
  45. Yankner B. A., Shooter E. M. The biology and mechanism of action of nerve growth factor. Annu Rev Biochem. 1982;51:845–868. doi: 10.1146/annurev.bi.51.070182.004213. [DOI] [PubMed] [Google Scholar]
  46. Yu M. W., Tolson N. W., Guroff G. Increased phosphorylation of specific nuclear proteins in superior cervical ganglia and PC12 cells in response to nerve growth factor. J Biol Chem. 1980 Nov 10;255(21):10481–10492. [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES