Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Sep 1;103(3):711–724. doi: 10.1083/jcb.103.3.711

A myosin heavy-chain-like polypeptide is associated with the nuclear envelope in higher eukaryotic cells

PMCID: PMC2114302  PMID: 2943745

Abstract

A high molecular weight polypeptide, identified as an ATPase subunit by direct ultraviolet photoaffinity labeling, has been shown to be a component of nuclear envelope-enriched fractions prepared from a variety of higher eukaryotes (Berrios, M., G. Blobel, and P. A. Fisher, 1983, J. Biol. Chem., 258:4548-4555). In rat liver as well as Drosophila melanogaster embryos, this polypeptide appears to be a form of myosin heavy chain. This conclusion is based on both immunochemical and immunocytochemical data, as well as on the results of CNBr and chymotryptic peptide map analyses. In Drosophila, the identification of this myosin heavy chain-like polypeptide as a nuclear envelope component has been corroborated in situ by indirect immunofluorescence analyses using permeabilized whole cells, mechanically extruded nuclei, and cryosections obtained from a number of larval tissues. Localization appears to be restricted to the nuclear periphery in a manner similar to that observed for the nuclear lamins and the pore complex glycoprotein. Antibodies directed against the Drosophila nuclear envelope ATPase have also been shown to decorate mammalian and higher plant cell nuclei in situ. Implications for intracellular nuclear mobility and for nucleocytoplasmic exchange of macromolecules in vivo are discussed.

Full Text

The Full Text of this article is available as a PDF (6.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agutter P. S., Richardson J. C. Nuclear non-chromatin proteinaceous structures: their role in the organization and function of the interphase nucleus. J Cell Sci. 1980 Aug;44:395–435. doi: 10.1242/jcs.44.1.395. [DOI] [PubMed] [Google Scholar]
  2. Allis C. D., Waring G. L., Mahowald A. P. Mass isolation of pole cells from Drosophila melanogaster. Dev Biol. 1977 Apr;56(2):372–381. doi: 10.1016/0012-1606(77)90277-9. [DOI] [PubMed] [Google Scholar]
  3. Bernstein S. I., Mogami K., Donady J. J., Emerson C. P., Jr Drosophila muscle myosin heavy chain encoded by a single gene in a cluster of muscle mutations. 1983 Mar 31-Apr 6Nature. 302(5907):393–397. doi: 10.1038/302393a0. [DOI] [PubMed] [Google Scholar]
  4. Berrios M., Blobel G., Fisher P. A. Characterization of an ATPase/dATPase activity associated with the Drosophila nuclear matrix-pore complex-lamina fraction. Identification of the putative enzyme polypeptide by direct ultraviolet photoaffinity labeling. J Biol Chem. 1983 Apr 10;258(7):4548–4555. [PubMed] [Google Scholar]
  5. Berrios M., Filson A. J., Blobel G., Fisher P. A. A 174-kilodalton ATPase/dATPase polypeptide and a glycoprotein of apparently identical molecular weight are common but distinct components of higher eukaryotic nuclear structural protein subfractions. J Biol Chem. 1983 Nov 10;258(21):13384–13390. [PubMed] [Google Scholar]
  6. Chang C. N., Model P., Blobel G. Membrane biogenesis: cotranslational integration of the bacteriophage f1 coat protein into an Escherichia coli membrane fraction. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1251–1255. doi: 10.1073/pnas.76.3.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chardonnet Y., Dales S. Early events in the interaction of adenoviruses with HeLa cells. 3. Relationship between an ATPase activity in nuclear envelopes and transfer of core material: a hypothesis. Virology. 1972 May;48(2):342–359. doi: 10.1016/0042-6822(72)90045-1. [DOI] [PubMed] [Google Scholar]
  8. Cleveland D. W., Fischer S. G., Kirschner M. W., Laemmli U. K. Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. J Biol Chem. 1977 Feb 10;252(3):1102–1106. [PubMed] [Google Scholar]
  9. Filson A. J., Lewis A., Blobel G., Fisher P. A. Monoclonal antibodies prepared against the major Drosophila nuclear Matrix-pore complex-lamina glycoprotein bind specifically to the nuclear envelope in situ. J Biol Chem. 1985 Mar 10;260(5):3164–3172. [PubMed] [Google Scholar]
  10. Fisher P. A., Berrios M., Blobel G. Isolation and characterization of a proteinaceous subnuclear fraction composed of nuclear matrix, peripheral lamina, and nuclear pore complexes from embryos of Drosophila melanogaster. J Cell Biol. 1982 Mar;92(3):674–686. doi: 10.1083/jcb.92.3.674. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fox N., Fernandez C., Studzinski G. P. Visualization of nucleolar substructure in cultured human fibroblasts by magnesium-activated adenosine triphosphatase reaction. J Histochem Cytochem. 1981 Oct;29(10):1115–1120. doi: 10.1177/29.10.6117591. [DOI] [PubMed] [Google Scholar]
  12. Gerace L., Ottaviano Y., Kondor-Koch C. Identification of a major polypeptide of the nuclear pore complex. J Cell Biol. 1982 Dec;95(3):826–837. doi: 10.1083/jcb.95.3.826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell. 1981 Jan;23(1):175–182. doi: 10.1016/0092-8674(81)90282-8. [DOI] [PubMed] [Google Scholar]
  14. Jockusch B. M., Ryser U., Behnke O. Myosin-like protein in Physarum nuclei. Exp Cell Res. 1973 Feb;76(2):464–466. doi: 10.1016/0014-4827(73)90405-9. [DOI] [PubMed] [Google Scholar]
  15. Johnson G. D., Nogueira Araujo G. M. A simple method of reducing the fading of immunofluorescence during microscopy. J Immunol Methods. 1981;43(3):349–350. doi: 10.1016/0022-1759(81)90183-6. [DOI] [PubMed] [Google Scholar]
  16. Klein R. L., Afzelius B. A. Nuclear membrane hydrolysis of adenosine triphosphate. Nature. 1966 Nov 5;212(5062):609–609. doi: 10.1038/212609a0. [DOI] [PubMed] [Google Scholar]
  17. Kuo C. H., Gilon H., Blumenthal A. B., Sedat J. W. A library of monoclonal antibodies to nuclear proteins from Drosophila melanogaster embryos. Characterization by a cultured cell assay. Exp Cell Res. 1982 Nov;142(1):141–154. doi: 10.1016/0014-4827(82)90418-9. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Lestourgeon W. M., Forer A., Yang Y. Z., Bertram J. S., Pusch H. P. Contractile proteins. Major components of nuclear and chromosome non-histone proteins. Biochim Biophys Acta. 1975 Feb 27;379(2):529–552. [PubMed] [Google Scholar]
  20. Nikodem V., Fresco J. R. Protein fingerprinting by SDS-gel electrophoresis after partial fragmentation with CNBr. Anal Biochem. 1979 Sep 1;97(2):382–386. doi: 10.1016/0003-2697(79)90089-7. [DOI] [PubMed] [Google Scholar]
  21. Rozek C. E., Davidson N. Drosophila has one myosin heavy-chain gene with three developmentally regulated transcripts. Cell. 1983 Jan;32(1):23–34. doi: 10.1016/0092-8674(83)90493-2. [DOI] [PubMed] [Google Scholar]
  22. Schindler M., Jiang L. W. Nuclear actin and myosin as control elements in nucleocytoplasmic transport. J Cell Biol. 1986 Mar;102(3):859–862. doi: 10.1083/jcb.102.3.859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sheetz M. P., Spudich J. A. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature. 1983 May 5;303(5912):31–35. doi: 10.1038/303031a0. [DOI] [PubMed] [Google Scholar]
  24. Shields G., Dübendorfer A., Sang J. H. Differentiation in vitro of larval cell types from early embryonic cells of Drosophila melanogaster. J Embryol Exp Morphol. 1975 Feb;33(1):159–175. [PubMed] [Google Scholar]
  25. Sikstrom R., Lanoix J., Bergeron J. J. An enzymic analysis of a nuclear envelope fraction. Biochim Biophys Acta. 1976 Sep 21;448(1):88–102. doi: 10.1016/0005-2736(76)90078-x. [DOI] [PubMed] [Google Scholar]
  26. Smith D. E., Fisher P. A. Identification, developmental regulation, and response to heat shock of two antigenically related forms of a major nuclear envelope protein in Drosophila embryos: application of an improved method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots. J Cell Biol. 1984 Jul;99(1 Pt 1):20–28. doi: 10.1083/jcb.99.1.20. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Unwin P. N., Milligan R. A. A large particle associated with the perimeter of the nuclear pore complex. J Cell Biol. 1982 Apr;93(1):63–75. doi: 10.1083/jcb.93.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Vorbrodt A., Maul G. G. Cytochemical studies on the relation of nucleoside triphosphatase activity to ribonucleoproteins in isolated rat liver nuclei. J Histochem Cytochem. 1980 Jan;28(1):27–35. doi: 10.1177/28.1.6153190. [DOI] [PubMed] [Google Scholar]
  29. Warn R., Bullard B., Maleki S. Myosin as a constituent of the Drosophila egg cortex. Nature. 1979 Apr 12;278(5705):651–653. doi: 10.1038/278651a0. [DOI] [PubMed] [Google Scholar]
  30. Whalen R. G., Sell S. M., Eriksson A., Thornell L. E. Myosin subunit types in skeletal and cardiac tissues and their developmental distribution. Dev Biol. 1982 Jun;91(2):478–484. doi: 10.1016/0012-1606(82)90055-0. [DOI] [PubMed] [Google Scholar]
  31. Yasuzumi G., Nakai Y., Tsubo I., Yasuda M., Sugioka T. The fine structure of nuclei as revealed by electron microscopy. IV. The intranuclear inclusion formation in Leydig cells of aging human testes. Exp Cell Res. 1967 Feb;45(2):261–276. doi: 10.1016/0014-4827(67)90178-4. [DOI] [PubMed] [Google Scholar]
  32. Yasuzumi G., Tsubo I. The fine structure of nuclei as revealed by electron microscopy. 3. Adenosine triphosphatase activity in the pores of nuclear envelope of mouse choroid plexus epithelial cells. Exp Cell Res. 1966 Sep;43(2):281–292. doi: 10.1016/0014-4827(66)90055-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES