Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Sep 1;103(3):857–866. doi: 10.1083/jcb.103.3.857

Myoblast fusion is regulated by a prostanoid of the one series independently of a rise in cyclic AMP

PMCID: PMC2114305  PMID: 3017999

Abstract

The role of prostanoids in the regulation of chick myoblast differentiation has been investigated. At 3 X 10(-6) M, indomethacin and chloroquine specifically inhibit cell fusion. They do not affect cell proliferation, alignment, or the expression of two muscle-specific proteins, namely, the acetylcholine receptor and the muscle-specific form of creatine phosphokinase. The results demonstrate that it is indomethacin's activity as an inhibitor of prostaglandin synthesis at the cyclooxygenase step that causes the block of cell fusion, whereas chloroquine probably acts at the earlier step of phospholipase A. Prostaglandin E1 (PGE1), but not prostaglandin E2 (PGE2), rapidly reverses the inhibition of fusion imposed by indomethacin or chloroquine. The dose response of the myoblasts to PGE1 is a bell- shaped curve with a 100% reversal of fusion at approximately 10(-9) M. Eicosatrienoate and linoleate reverse the inhibition of fusion with similar kinetics, whereas arachidonate is completely ineffective. The ability of PGE1 and eicosatrienoate but not PGE2 and arachidonate to restore fusion to control levels implies that fusion is specifically regulated by a prostanoid of the one series. The reversal of the fusion- block by linoleate further suggests that this fatty acid provides the necessary source of eicosatrienoate in the myoblast plasma membrane. At 10(-8) M and above, PGE1 and PGE2 stimulate adenylate cyclase and depress control fusion as does 10(-5) M isoproterenol. The beta- adrenergic blocker propranolol abolishes both isoproterenol's inhibition of myoblast fusion and its activation of adenylate cyclase. The similar depressions imposed on cell fusion by 10(-8)-10(-6) M prostanoid and 10(-5) M isoproterenol suggest that in both cases the depressive effects are mediated by cyclic AMP. It is concluded that a prostanoid of the one series regulates fusion by a cyclic AMP- independent mechanisms.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blackwell G. J., Duncombe W. G., Flower R. J., Parsons M. F., Vane J. R. The distribution and metabolism of arachidonic acid in rabbit platelets during aggregation and its modification by drugs. Br J Pharmacol. 1977 Feb;59(2):353–366. doi: 10.1111/j.1476-5381.1977.tb07500.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boland R., Chyn T., Roufa D., Reyes E., Martonosi A. The lipid composition of muscle cells during development. Biochim Biophys Acta. 1977 Dec 21;489(3):349–359. doi: 10.1016/0005-2760(77)90155-2. [DOI] [PubMed] [Google Scholar]
  3. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caravatti M., Perriard J. C., Eppenberger H. M. Developmental regulation of creatine kinase isoenzymes in myogenic cell cultures from chicken. Biosynthesis of creatine kinase subunits M and B. J Biol Chem. 1979 Feb 25;254(4):1388–1394. [PubMed] [Google Scholar]
  5. Ciak J., Hahn F. E. Chloroquine: mode of action. Science. 1966 Jan 21;151(3708):347–349. doi: 10.1126/science.151.3708.347. [DOI] [PubMed] [Google Scholar]
  6. Cohen S. N., Yielding K. L. Inhibition of DNA and RNA polymerase reactions by chloroquine. Proc Natl Acad Sci U S A. 1965 Aug;54(2):521–527. doi: 10.1073/pnas.54.2.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Conn R. B., Jr, Anido V. Creatine phosphokinase determination by the fluorescent ninhydrin reaction. Am J Clin Pathol. 1966 Aug;46(2):177–184. doi: 10.1093/ajcp/46.2.177. [DOI] [PubMed] [Google Scholar]
  8. Curtis D. H., Zalin R. J. Regulation of muscle differentiation: stimulation of myoblast fusion in vitro by catecholamines. Science. 1981 Dec 18;214(4527):1355–1357. doi: 10.1126/science.6274017. [DOI] [PubMed] [Google Scholar]
  9. Curtis D. H., Zalin R. J. The differentiation of avian skeletal muscle in culture: changes in responsiveness of adenylyl cyclase to prostaglandin E1 and adrenergic agonists. J Cell Physiol. 1985 May;123(2):219–227. doi: 10.1002/jcp.1041230211. [DOI] [PubMed] [Google Scholar]
  10. David J. D., Higginbotham C. A. Fusion of chick embryo skeletal myoblasts: interactions of prostaglandin E1, adenosine 3':5' monophosphate, and calcium influx. Dev Biol. 1981 Mar;82(2):308–316. doi: 10.1016/0012-1606(81)90454-1. [DOI] [PubMed] [Google Scholar]
  11. David J. D., See W. M., Higginbotham C. A. Fusion of chick embryo skeletal myoblasts: role of calcium influx preceding membrane union. Dev Biol. 1981 Mar;82(2):297–307. doi: 10.1016/0012-1606(81)90453-x. [DOI] [PubMed] [Google Scholar]
  12. Fedorko M. E., Hirsch J. G., Cohn Z. A. Autophagic vacuoles produced in vitro. I. Studies on cultured macrophages exposed to chloroquine. J Cell Biol. 1968 Aug;38(2):377–391. doi: 10.1083/jcb.38.2.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Flower R. J., Blackwell G. J. The importance of phospholipase-A2 in prostaglandin biosynthesis. Biochem Pharmacol. 1976 Feb 1;25(3):285–291. doi: 10.1016/0006-2952(76)90216-1. [DOI] [PubMed] [Google Scholar]
  14. Flower R. J. Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev. 1974 Mar;26(1):33–67. [PubMed] [Google Scholar]
  15. Irvine R. F. How is the level of free arachidonic acid controlled in mammalian cells? Biochem J. 1982 Apr 15;204(1):3–16. doi: 10.1042/bj2040003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jain M. K., Streb M., Rogers J., DeHaas G. H. Action of phospholipase A2 on bilayers containing lysophosphatidylcholine analogs and the effect of inhibitors. Biochem Pharmacol. 1984 Aug 15;33(16):2541–2551. doi: 10.1016/0006-2952(84)90622-1. [DOI] [PubMed] [Google Scholar]
  17. KISSANE J. M., ROBINS E. The fluorometric measurement of deoxyribonucleic acid in animal tissues with special reference to the central nervous system. J Biol Chem. 1958 Jul;233(1):184–188. [PubMed] [Google Scholar]
  18. Kantor H. S., Hampton M. Indomethacin in submicromolar concentrations inhibits cyclic AMP-dependent protein kinase. Nature. 1978 Dec 21;276(5690):841–842. doi: 10.1038/276841a0. [DOI] [PubMed] [Google Scholar]
  19. Kent C. Inhibition of myoblast fusion by lysosomotropic amines. Dev Biol. 1982 Mar;90(1):91–98. doi: 10.1016/0012-1606(82)90214-7. [DOI] [PubMed] [Google Scholar]
  20. Kent C., Schimmel S. D., Vagelos P. R. Lipid composition of plasma membranes from developing chick muscle cells in culture. Biochim Biophys Acta. 1974 Sep 19;360(3):312–321. doi: 10.1016/0005-2760(74)90061-7. [DOI] [PubMed] [Google Scholar]
  21. Knudsen K. A., Horwitz A. F. Tandem events in myoblast fusion. Dev Biol. 1977 Jul 15;58(2):328–338. doi: 10.1016/0012-1606(77)90095-1. [DOI] [PubMed] [Google Scholar]
  22. Koedam J. C. Creatine phosphokinase, modified fluorometric method. Clin Chim Acta. 1969 Jan;23(1):63–66. doi: 10.1016/0009-8981(69)90011-4. [DOI] [PubMed] [Google Scholar]
  23. Lee C. Y., Tseng L. F. Distribution of Bungarus multicinctus venom following envenomation. Toxicon. 1966 Apr;3(4):281–290. doi: 10.1016/0041-0101(66)90076-6. [DOI] [PubMed] [Google Scholar]
  24. Markus H. B., Ball E. G. Inhibition of lipolytic processes in rat adipose tissue by antimalaria drugs. Biochim Biophys Acta. 1969 Dec 17;187(4):486–491. doi: 10.1016/0005-2760(69)90045-9. [DOI] [PubMed] [Google Scholar]
  25. Matsuzawa Y., Hostetler K. Y. Inhibition of lysosomal phospholipase A and phospholipase C by chloroquine and 4,4'-bis(diethylaminoethoxy) alpha, beta-diethyldiphenylethane. J Biol Chem. 1980 Jun 10;255(11):5190–5194. [PubMed] [Google Scholar]
  26. Moss P. S., Strohman R. C. Myosin synthesis by fusion-arrested chick embryo myoblasts in cell culture. Dev Biol. 1976 Feb;48(2):431–437. doi: 10.1016/0012-1606(76)90104-4. [DOI] [PubMed] [Google Scholar]
  27. Neff N., Decker C., Horwitz A. The kinetics of myoblast fusion. Exp Cell Res. 1984 Jul;153(1):25–31. doi: 10.1016/0014-4827(84)90444-0. [DOI] [PubMed] [Google Scholar]
  28. Perriard J. C., Caravatti M., Perriard E. R., Eppenberger H. M. Quantitation of creatine kinase isoenzyme transition in differentiating chicken embryonic breast muscle and myogenic cell cultures by immunoadsorption. Arch Biochem Biophys. 1978 Nov;191(1):90–100. doi: 10.1016/0003-9861(78)90070-x. [DOI] [PubMed] [Google Scholar]
  29. Prives J., Shinitzky M. Increased membrane fluidity precedes fusion of muscle cells. Nature. 1977 Aug 25;268(5622):761–763. doi: 10.1038/268761a0. [DOI] [PubMed] [Google Scholar]
  30. Reasor M. J., Hostetler K. Y. Chloroquine treatment does not cause phospholipid storage by depleting rat liver lysosomes of acid phospholipase A. Biochim Biophys Acta. 1984 May 11;793(3):497–501. doi: 10.1016/0005-2760(84)90270-4. [DOI] [PubMed] [Google Scholar]
  31. Rittenhouse-Simmons S. Indomethacin-induced accumulation of diglyceride in activated human platelets. The role of diglyceride lipase. J Biol Chem. 1980 Mar 25;255(6):2259–2262. [PubMed] [Google Scholar]
  32. Tepperman K., Morris G., Essien F., Heywood S. M. A mechanical dissociation method for preparation of muscle cell cultures. J Cell Physiol. 1975 Dec;86(3 Pt 1):561–565. doi: 10.1002/jcp.1040860313. [DOI] [PubMed] [Google Scholar]
  33. Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
  34. Vertel B. M., Fischman D. A. Myosin accumulation in mononucleated cells of chick muscle cultures. Dev Biol. 1976 Feb;48(2):438–446. doi: 10.1016/0012-1606(76)90105-6. [DOI] [PubMed] [Google Scholar]
  35. Wahrmann J. P., Winand R., Luzzati D. Effect of cyclic AMP on growth and morphological differentiation of an established myogenic cell line. Nat New Biol. 1973 Sep 26;245(143):112–113. doi: 10.1038/newbio245112a0. [DOI] [PubMed] [Google Scholar]
  36. Wakelam M. J. The fusion of myoblasts. Biochem J. 1985 May 15;228(1):1–12. doi: 10.1042/bj2280001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zalin R. J. Prostaglandins and myoblast fusion. Dev Biol. 1977 Sep;59(2):241–248. doi: 10.1016/0012-1606(77)90258-5. [DOI] [PubMed] [Google Scholar]
  38. Zalin R. J. The relationship of the level of cyclic amp to differentiation in primary cultures of chick muscle cells. Exp Cell Res. 1973 Mar 30;78(1):152–158. doi: 10.1016/0014-4827(73)90049-9. [DOI] [PubMed] [Google Scholar]
  39. de Duve C., de Barsy T., Poole B., Trouet A., Tulkens P., Van Hoof F. Commentary. Lysosomotropic agents. Biochem Pharmacol. 1974 Sep 15;23(18):2495–2531. doi: 10.1016/0006-2952(74)90174-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES