Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Sep 1;103(3):699–709. doi: 10.1083/jcb.103.3.699

Isolation and characterization of a novel ribonucleoprotein particle: large structures contain a single species of small RNA

PMCID: PMC2114306  PMID: 2943744

Abstract

Rat liver coated vesicle preparations were frequently found to contain small ovoid bodies, which resembled coated vesicles in morphology. We have purified these bodies to homogeneity using sucrose density gradients and preparative agarose gel electrophoresis. When negatively stained and viewed by electron microscopy, the purified structures display a very distinct and complex morphology, resembling the multiple arches which form cathedral vaults. They measure 35 X 65 nm and are therefore considerably larger than ribosomes. When subjected to SDS PAGE, these structures, which we refer to as vaults, appear to contain several minor and five major species: Mr 210,000, 192,000, 104,000, 54,000, and 37,000. One of these (Mr 104,000) greatly predominates, accounting for greater than 70% of the total Coomassie Brilliant Blue- staining protein. Another major species of Mr 37,000 has been identified as a species of small RNA of unusual base composition (adenosine 12.0%, guanosine 29.7%, uridine 30.9%, and 27.4% cytidine), which migrates as a single species in urea PAGE between the 5S and 5.8S ribosomal standards, containing approximately 140 bases. Although the RNA constitutes only 4.6% of the entire structure, the large size of the particle requires that each one contains approximately 9 molecules of this RNA. Antibodies prepared against the entire particle are largely specific for the major (Mr 104,000) polypeptide species. Although they do not directly react with the RNA constituent on Western blots, these antibodies immunoprecipitate a 32P-labeled RNA of identical size from metabolically-labeled rat hepatoma cells. Vaults are observed in partially purified fractions from human fibroblasts, murine 3T3 cells, glial cells, and rabbit alveolar macrophages. It therefore appears that these novel ribonucleoprotein structures are broadly distributed among different cell types. The function of vaults is at present unknown.

Full Text

The Full Text of this article is available as a PDF (3.9 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aoyama K., Hidaka S., Tanaka T., Ishikawa K. The nucleotide sequence of 5S RNA from rat liver ribosomes. J Biochem. 1982 Jan;91(1):363–367. doi: 10.1093/oxfordjournals.jbchem.a133696. [DOI] [PubMed] [Google Scholar]
  2. Black D. L., Chabot B., Steitz J. A. U2 as well as U1 small nuclear ribonucleoproteins are involved in premessenger RNA splicing. Cell. 1985 Oct;42(3):737–750. doi: 10.1016/0092-8674(85)90270-3. [DOI] [PubMed] [Google Scholar]
  3. Blitz A. L., Fine R. E., Toselli P. A. Evidence that coated vesicles isolated from brain are calcium-sequestering organelles resembling sarcoplasmic reticulum. J Cell Biol. 1977 Oct;75(1):135–147. doi: 10.1083/jcb.75.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brosius J., Dull T. J., Noller H. F. Complete nucleotide sequence of a 23S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A. 1980 Jan;77(1):201–204. doi: 10.1073/pnas.77.1.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Buck M., Connick M., Ames B. N. Complete analysis of tRNA-modified nucleosides by high-performance liquid chromatography: the 29 modified nucleosides of Salmonella typhimurium and Escherichia coli tRNA. Anal Biochem. 1983 Feb 15;129(1):1–13. doi: 10.1016/0003-2697(83)90044-1. [DOI] [PubMed] [Google Scholar]
  6. Busch H., Reddy R., Rothblum L., Choi Y. C. SnRNAs, SnRNPs, and RNA processing. Annu Rev Biochem. 1982;51:617–654. doi: 10.1146/annurev.bi.51.070182.003153. [DOI] [PubMed] [Google Scholar]
  7. Erdmann V. A., Wolters J., Huysmans E., De Wachter R. Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences. Nucleic Acids Res. 1985;13 (Suppl):r105–r153. doi: 10.1093/nar/13.suppl.r105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Hawkes R. Identification of concanavalin A-binding proteins after sodium dodecyl sulfate--gel electrophoresis and protein blotting. Anal Biochem. 1982 Jun;123(1):143–146. doi: 10.1016/0003-2697(82)90634-0. [DOI] [PubMed] [Google Scholar]
  9. Jacob M., Lazar E., Haendler B., Gallinaro H., Krol A., Branlant C. A family of small nucleoplasmic RNAs with common structural features. Biol Cell. 1984;51(1):1–9. doi: 10.1111/j.1768-322x.1984.tb00278.x. [DOI] [PubMed] [Google Scholar]
  10. Kedersha N. L., Rome L. H. Preparative agarose gel electrophoresis for the purification of small organelles and particles. Anal Biochem. 1986 Jul;156(1):161–170. doi: 10.1016/0003-2697(86)90168-5. [DOI] [PubMed] [Google Scholar]
  11. Krainer A. R., Maniatis T. Multiple factors including the small nuclear ribonucleoproteins U1 and U2 are necessary for pre-mRNA splicing in vitro. Cell. 1985 Oct;42(3):725–736. doi: 10.1016/0092-8674(85)90269-7. [DOI] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  14. Lake J. A. Evolving ribosome structure: domains in archaebacteria, eubacteria, eocytes and eukaryotes. Annu Rev Biochem. 1985;54:507–530. doi: 10.1146/annurev.bi.54.070185.002451. [DOI] [PubMed] [Google Scholar]
  15. Merril C. R., Goldman D., Van Keuren M. L. Silver staining methods for polyacrylamide gel electrophoresis. Methods Enzymol. 1983;96:230–239. doi: 10.1016/s0076-6879(83)96021-4. [DOI] [PubMed] [Google Scholar]
  16. Nomura M., Gourse R., Baughman G. Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 1984;53:75–117. doi: 10.1146/annurev.bi.53.070184.000451. [DOI] [PubMed] [Google Scholar]
  17. Pearse B. M. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. Proc Natl Acad Sci U S A. 1976 Apr;73(4):1255–1259. doi: 10.1073/pnas.73.4.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Reddy R. Compilation of small RNA sequences. Nucleic Acids Res. 1985;13 (Suppl):r155–r163. doi: 10.1093/nar/13.suppl.r155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reddy R., Henning D., Busch H. Primary and secondary structure of U8 small nuclear RNA. J Biol Chem. 1985 Sep 15;260(20):10930–10935. [PubMed] [Google Scholar]
  20. Reynolds J. A., Nozaki Y., Tanford C. Gel-exclusion chromatography on S1000 Sephacryl: application to phospholipid vesicles. Anal Biochem. 1983 Apr 15;130(2):471–474. doi: 10.1016/0003-2697(83)90618-8. [DOI] [PubMed] [Google Scholar]
  21. Rubenstein J. L., Fine R. E., Luskey B. D., Rothman J. E. Purification of coated vesicles by agarose gel electrophoresis. J Cell Biol. 1981 May;89(2):357–361. doi: 10.1083/jcb.89.2.357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sarkar S., Mukherjee A. K., Guha C. A ribonuclease-resistant cytoplasmic 10 S ribonucleoprotein of chick embryonic muscle. A potent inhibitor of cell-free protein synthesis. J Biol Chem. 1981 May 25;256(10):5077–5086. [PubMed] [Google Scholar]
  23. Subrahmanyam C. S., Cassidy B., Busch H., Rothblum L. I. Nucleotide sequence of the region between the 18S rRNA sequence and the 28S rRNA sequence of rat ribosomal DNA. Nucleic Acids Res. 1982 Jun 25;10(12):3667–3680. doi: 10.1093/nar/10.12.3667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Unanue E. R., Ungewickell E., Branton D. The binding of clathrin triskelions to membranes from coated vesicles. Cell. 1981 Nov;26(3 Pt 1):439–446. doi: 10.1016/0092-8674(81)90213-0. [DOI] [PubMed] [Google Scholar]
  26. Walter P., Blobel G. Purification of a membrane-associated protein complex required for protein translocation across the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1980 Dec;77(12):7112–7116. doi: 10.1073/pnas.77.12.7112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Walter P., Blobel G. Signal recognition particle contains a 7S RNA essential for protein translocation across the endoplasmic reticulum. Nature. 1982 Oct 21;299(5885):691–698. doi: 10.1038/299691a0. [DOI] [PubMed] [Google Scholar]
  28. Wiegers U., Kramer G., Hilz H. Selective determination of mRNA specific radioactivity in HeLa cells without the use of inhibitors. Biochem Biophys Res Commun. 1973 Feb 20;50(4):1039–1047. doi: 10.1016/0006-291x(73)91511-8. [DOI] [PubMed] [Google Scholar]
  29. Woodward M. P., Roth T. F. Coated vesicles: characterization, selective dissociation, and reassembly. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4394–4398. doi: 10.1073/pnas.75.9.4394. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES