Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Sep 1;103(3):995–1005. doi: 10.1083/jcb.103.3.995

Neonatal and adult myosin heavy chain isoforms in a nerve-muscle culture system

PMCID: PMC2114309  PMID: 3745278

Abstract

When adult mouse muscle fibers are co-cultured with embryonic mouse spinal cord, the muscle regenerates to form myotubes that develop cross- striations and contractions. We have investigated the myosin heavy chain (MHC) isoforms present in these cultures using polyclonal antibodies to the neonatal, adult fast, and slow MHC isoforms of rat (all of which were shown to react specifically with the analogous mouse isoforms) in an immunocytochemical assay. The adult fast MHC was absent in newly formed myotubes but was found at later times, although it was absent when the myotubes myotubes were cultured without spinal cord tissue. When nerve-induced muscle contractions were blocked by the continuous presence of alpha-bungarotoxin, there was no decrease in the proportion of fibers that contained adult fast MHC. Neonatal and slow MHC were found at all times in culture, even in the absence of the spinal cord, and so their expression was not thought to be nerve- dependent. Thus, in this culture system, the expression of adult fast MHC required the presence of the spinal cord, but was probably not dependent upon nerve-induced contractile activity in the muscle fibers.

Full Text

The Full Text of this article is available as a PDF (3.4 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bader D., Masaki T., Fischman D. A. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J Cell Biol. 1982 Dec;95(3):763–770. doi: 10.1083/jcb.95.3.763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bandman E., Matsuda R., Strohman R. C. Developmental appearance of myosin heavy and light chain isoforms in vivo and in vitro in chicken skeletal muscle. Dev Biol. 1982 Oct;93(2):508–518. doi: 10.1016/0012-1606(82)90138-5. [DOI] [PubMed] [Google Scholar]
  3. Bandman E. Myosin components of the latissimus dorsi and the pectoralis major muscles in the dystrophic chicken. Muscle Nerve. 1984 May;7(4):312–326. doi: 10.1002/mus.880070410. [DOI] [PubMed] [Google Scholar]
  4. Bischoff R. Regeneration of single skeletal muscle fibers in vitro. Anat Rec. 1975 Jun;182(2):215–235. doi: 10.1002/ar.1091820207. [DOI] [PubMed] [Google Scholar]
  5. Bonner P. H., Adams T. R. Neural induction of chick myoblast differentiation in culture. Dev Biol. 1982 Mar;90(1):175–184. doi: 10.1016/0012-1606(82)90223-8. [DOI] [PubMed] [Google Scholar]
  6. Butler-Browne G. S., Bugaisky L. B., Cuénoud S., Schwartz K., Whalen R. G. Denervation of newborn rat muscle does not block the appearance of adult fast myosin heavy chain. Nature. 1982 Oct 28;299(5886):830–833. doi: 10.1038/299830a0. [DOI] [PubMed] [Google Scholar]
  7. Butler-Browne G. S., Whalen R. G. Myosin isozyme transitions occurring during the postnatal development of the rat soleus muscle. Dev Biol. 1984 Apr;102(2):324–334. doi: 10.1016/0012-1606(84)90197-0. [DOI] [PubMed] [Google Scholar]
  8. Carraro U., Dalla Libera L., Catani C., Danieli-Betto D. Chronic denervation of rat diaphragm: selective maintenance of adult fast myosin heavy chains. Muscle Nerve. 1982 Sep;5(7):515–524. doi: 10.1002/mus.880050706. [DOI] [PubMed] [Google Scholar]
  9. Carraro U., Dalla Libera L., Catani C. Myosin light and heavy chains in muscle regenerating in absence of the nerve: transient appearance of the embryonic light chain. Exp Neurol. 1983 Jan;79(1):106–117. doi: 10.1016/0014-4886(83)90382-5. [DOI] [PubMed] [Google Scholar]
  10. Crain S. M., Alfei L., Peterson E. R. Neuromuscular transmission in cultures of adult human and rodent skeletal muscle after innervation in vitro by fetal rodent spinal cord. J Neurobiol. 1970;1(4):471–489. doi: 10.1002/neu.480010409. [DOI] [PubMed] [Google Scholar]
  11. Ecob M. S., Butler-Browne G. S., Whalen R. G. The adult fast isozyme of myosin is present in a nerve-muscle tissue culture system. Differentiation. 1983;25(1):84–87. doi: 10.1111/j.1432-0436.1984.tb01342.x. [DOI] [PubMed] [Google Scholar]
  12. Ecob M. S. The application of organotypic nerve cultures to problems in neurology with special reference to their potential use in research into neuromuscular diseases. J Neurol Sci. 1983 Jan;58(1):1–15. doi: 10.1016/0022-510x(83)90105-3. [DOI] [PubMed] [Google Scholar]
  13. Ecob M. The location of neuromuscular junctions on regenerating adult mouse muscle in culture. J Neurol Sci. 1984 May;64(2):175–182. doi: 10.1016/0022-510x(84)90035-2. [DOI] [PubMed] [Google Scholar]
  14. Fitzsimons R. B., Hoh J. F. Embryonic and foetal myosins in human skeletal muscle. The presence of foetal myosins in duchenne muscular dystrophy and infantile spinal muscular atrophy. J Neurol Sci. 1981 Nov-Dec;52(2-3):367–384. doi: 10.1016/0022-510x(81)90018-6. [DOI] [PubMed] [Google Scholar]
  15. Fitzsimons R. B., Hoh J. F. Myosin isoenzymes in fast-twitch and slow-twitch muscles of normal and dystrophic mice. J Physiol. 1983 Oct;343:539–550. doi: 10.1113/jphysiol.1983.sp014908. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Gambke B., Lyons G. E., Haselgrove J., Kelly A. M., Rubinstein N. A. Thyroidal and neural control of myosin transitions during development of rat fast and slow muscles. FEBS Lett. 1983 Jun 13;156(2):335–339. doi: 10.1016/0014-5793(83)80524-9. [DOI] [PubMed] [Google Scholar]
  17. Guth L. "Trophic" influences of nerve on muscle. Physiol Rev. 1968 Oct;48(4):645–687. doi: 10.1152/physrev.1968.48.4.645. [DOI] [PubMed] [Google Scholar]
  18. Harris A. J. Embryonic growth and innervation of rat skeletal muscles. I. Neural regulation of muscle fibre numbers. Philos Trans R Soc Lond B Biol Sci. 1981 Jul 16;293(1065):257–277. doi: 10.1098/rstb.1981.0076. [DOI] [PubMed] [Google Scholar]
  19. Harris A. J. Embryonic growth and innervation of rat skeletal muscles. II. Neural regulation of muscle cholinesterase. Philos Trans R Soc Lond B Biol Sci. 1981 Jul 16;293(1065):279–286. doi: 10.1098/rstb.1981.0077. [DOI] [PubMed] [Google Scholar]
  20. Harris A. J. Embryonic growth and innervation of rat skeletal muscles. III. Neural regulation of junctional and extra-junctional acetylcholine receptor clusters. Philos Trans R Soc Lond B Biol Sci. 1981 Jul 16;293(1065):287–314. doi: 10.1098/rstb.1981.0078. [DOI] [PubMed] [Google Scholar]
  21. Hoh J. F., Yeoh G. P. Rabbit skeletal myosin isoenzymes from fetal, fast-twitch and slow-twitch muscles. Nature. 1979 Jul 26;280(5720):321–323. doi: 10.1038/280321a0. [DOI] [PubMed] [Google Scholar]
  22. Jolesz F., Sreter F. A. Development, innervation, and activity-pattern induced changes in skeletal muscle. Annu Rev Physiol. 1981;43:531–552. doi: 10.1146/annurev.ph.43.030181.002531. [DOI] [PubMed] [Google Scholar]
  23. Konigsberg U. R., Lipton B. H., Konigsberg I. R. The regenerative response of single mature muscle fibers isolated in vitro. Dev Biol. 1975 Aug;45(2):260–275. doi: 10.1016/0012-1606(75)90065-2. [DOI] [PubMed] [Google Scholar]
  24. Lomo T., Rosenthal J. Control of ACh sensitivity by muscle activity in the rat. J Physiol. 1972 Mar;221(2):493–513. doi: 10.1113/jphysiol.1972.sp009764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lowey S., Benfield P. A., LeBlanc D. D., Waller G. S. Myosin isozymes in avian skeletal muscles. I. Sequential expression of myosin isozymes in developing chicken pectoralis muscles. J Muscle Res Cell Motil. 1983 Dec;4(6):695–716. doi: 10.1007/BF00712161. [DOI] [PubMed] [Google Scholar]
  26. Lyons G. E., Haselgrove J., Kelly A. M., Rubinstein N. A. Myosin transitions in developing fast and slow muscles of the rat hindlimb. Differentiation. 1983;25(2):168–175. doi: 10.1111/j.1432-0436.1984.tb01352.x. [DOI] [PubMed] [Google Scholar]
  27. Masurovsky E. B., Peterson E. R. Photo-reconstituted collagen gel for tissue culture substrates. Exp Cell Res. 1973 Feb;76(2):447–448. doi: 10.1016/0014-4827(73)90399-6. [DOI] [PubMed] [Google Scholar]
  28. Matsuda R., Spector D. H., Strohman R. C. Regenerating adult chicken skeletal muscle and satellite cell cultures express embryonic patterns of myosin and tropomyosin isoforms. Dev Biol. 1983 Dec;100(2):478–488. doi: 10.1016/0012-1606(83)90240-3. [DOI] [PubMed] [Google Scholar]
  29. Matsuda R., Spector D., Strohman R. C. Denervated skeletal muscle displays discoordinate regulation for the synthesis of several myofibrillar proteins. Proc Natl Acad Sci U S A. 1984 Feb;81(4):1122–1125. doi: 10.1073/pnas.81.4.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pappas G. D., Peterson E. R., Masurovsky E. B., Crain S. M. Electron microscopy of the in vitro development of mammalian motor end plates. Ann N Y Acad Sci. 1971 Sep 15;183:33–45. doi: 10.1111/j.1749-6632.1971.tb30740.x. [DOI] [PubMed] [Google Scholar]
  31. Peterson E. R., Crain S. M. Regeneration and innervation in cultures of adult mammalian skeletal muscle coupled with fetal rodent spinal cord. Exp Neurol. 1972 Jul;36(1):136–159. doi: 10.1016/0014-4886(72)90142-2. [DOI] [PubMed] [Google Scholar]
  32. Robbins N., Yonezawa T. Physiological studies during formation and development of rat neuromuscular junctions in tissue culture. J Gen Physiol. 1971 Oct;58(4):467–481. doi: 10.1085/jgp.58.4.467. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rushbrook J. I., Stracher A. Comparison of adult, embryonic, and dystrophic myosin heavy chains from chicken muscle by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and peptide mapping. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4331–4334. doi: 10.1073/pnas.76.9.4331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Salmons S., Henriksson J. The adaptive response of skeletal muscle to increased use. Muscle Nerve. 1981 Mar-Apr;4(2):94–105. doi: 10.1002/mus.880040204. [DOI] [PubMed] [Google Scholar]
  35. Thornell L. E., Billeter R., Butler-Browne G. S., Eriksson P. O., Ringqvist M., Whalen R. G. Development of fiber types in human fetal muscle. An immunocytochemical study. J Neurol Sci. 1984 Oct;66(1):107–115. doi: 10.1016/0022-510x(84)90146-1. [DOI] [PubMed] [Google Scholar]
  36. Whalen R. G., Butler-Browne G. S., Bugaisky L. B., Harris J. B., Herliocoviez D. Myosin isozyme transitions in developing and regenerating rat muscle. Adv Exp Med Biol. 1985;182:249–257. doi: 10.1007/978-1-4684-4907-5_21. [DOI] [PubMed] [Google Scholar]
  37. Whalen R. G., Johnstone D., Bryers P. S., Butler-Browne G. S., Ecob M. S., Jaros E. A developmentally regulated disappearance of slow myosin in fast-type muscles of the mouse. FEBS Lett. 1984 Nov 5;177(1):51–56. doi: 10.1016/0014-5793(84)80979-5. [DOI] [PubMed] [Google Scholar]
  38. Whalen R. G. Myosin isoenzymes as molecular markers for muscle physiology. J Exp Biol. 1985 Mar;115:43–53. doi: 10.1242/jeb.115.1.43. [DOI] [PubMed] [Google Scholar]
  39. Whalen R. G., Schwartz K., Bouveret P., Sell S. M., Gros F. Contractile protein isozymes in muscle development: identification of an embryonic form of myosin heavy chain. Proc Natl Acad Sci U S A. 1979 Oct;76(10):5197–5201. doi: 10.1073/pnas.76.10.5197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Whalen R. G., Sell S. M., Butler-Browne G. S., Schwartz K., Bouveret P., Pinset-Härstöm I. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature. 1981 Aug 27;292(5826):805–809. doi: 10.1038/292805a0. [DOI] [PubMed] [Google Scholar]
  41. Whalen R. G., Toutant M., Butler-Browne G. S., Watkins S. C. Hereditary pituitary dwarfism in mice affects skeletal and cardiac myosin isozyme transitions differently. J Cell Biol. 1985 Aug;101(2):603–609. doi: 10.1083/jcb.101.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES