Abstract
Denervation of vertebrate muscle causes an acceleration of acetylcholine receptor turnover at the neuromuscular junction. This acceleration reflects the composite behavior of two populations of receptors: "original receptors" present at the junction at the time of denervation, and "new receptors" inserted into the denervated junction to replace the original receptors as they are degraded (Levitt, T. A., and M. M. Salpeter, 1981, Nature (Lond.), 291:239-241). The present study examined the degradation rate of original receptors to determine whether reinnervation could reverse the effect of denervation. Sternomastoid muscles in adult mice were denervated by either cutting or crushing the nerve, and the nerves either allowed to regenerate or ligated to prevent regeneration. The original receptors were labeled with 125I-alpha-bungarotoxin at the time of denervation, and their degradation rate followed by gamma counting. We found that when the nerve was not allowed to regenerate, the degradation decreased from a t1/2 of approximately 8-10 d to one of approximately 3 d (as reported earlier for denervated original receptors) and remained at that half- life throughout the experiment (approximately 36 d). If the axons were allowed to regenerate (which occurred asynchronously between day 14 and day 30 after nerve cut and between day 7 and 13 after nerve crush), the accelerated degradation rate of the original receptors reverted to a t1/2 of approximately 8 d. Our data lead us to conclude that the effect of denervation on the degradation rate of original receptors can be reversed by reinnervating. The nerve can thus slow the degradation rate of receptors previously inserted into the postsynaptic membrane.
Full Text
The Full Text of this article is available as a PDF (681.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bevan S., Steinbach J. H. Denervation increases the degradation rate of acetylcholine receptors at end-plates in vivo and in vitro. J Physiol. 1983 Mar;336:159–177. doi: 10.1113/jphysiol.1983.sp014574. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brenner H. R., Sakmann B. Neurotrophic control of channel properties at neuromuscular synapses of rat muscle. J Physiol. 1983 Apr;337:159–171. doi: 10.1113/jphysiol.1983.sp014617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brett R. S., Younkin S. G., Konieczkowski M., Slugg R. M. Accelerated degradation of junctional acetylcholine receptor-alpha-bungarotoxin complexes in denervated rat diaphragm. Brain Res. 1982 Feb 4;233(1):133–142. doi: 10.1016/0006-8993(82)90935-0. [DOI] [PubMed] [Google Scholar]
- Burden S. Acetylcholine receptors at the neuromuscular junction: developmental change in receptor turnover. Dev Biol. 1977 Nov;61(1):79–85. doi: 10.1016/0012-1606(77)90343-8. [DOI] [PubMed] [Google Scholar]
- Devreotes P. N., Fambrough D. M. Acetylcholine receptor turnover in membranes of developing muscle fibers. J Cell Biol. 1975 May;65(2):335–358. doi: 10.1083/jcb.65.2.335. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
- Fertuck H. C., Woodward W., Salpeter M. M. In vivo recovery of muscle contraction after alpha-bungarotoxin binding. J Cell Biol. 1975 Jul;66(1):209–213. doi: 10.1083/jcb.66.1.209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- KARNOVSKY M. J., ROOTS L. A "DIRECT-COLORING" THIOCHOLINE METHOD FOR CHOLINESTERASES. J Histochem Cytochem. 1964 Mar;12:219–221. doi: 10.1177/12.3.219. [DOI] [PubMed] [Google Scholar]
- Lee C. Y., Chang S. L., Kau S. T., Luh S. H. Chromatographic separation of the venom of Bungarus multicinctus and characterization of its components. J Chromatogr. 1972 Oct 5;72(1):71–82. doi: 10.1016/0021-9673(72)80009-8. [DOI] [PubMed] [Google Scholar]
- Levitt-Gilmour T. A., Salpeter M. M. Gradient of extrajunctional acetylcholine receptors early after denervation of mammalian muscle. J Neurosci. 1986 Jun;6(6):1606–1612. doi: 10.1523/JNEUROSCI.06-06-01606.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levitt T. A., Loring R. H., Salpeter M. M. Neuronal control of acetylcholine receptor turnover rate at a vertebrate neuromuscular junction. Science. 1980 Oct 31;210(4469):550–551. doi: 10.1126/science.7423205. [DOI] [PubMed] [Google Scholar]
- Levitt T. A., Salpeter M. M. Denervated endplates have a dual population of junctional acetylcholine receptors. Nature. 1981 May 21;291(5812):239–241. doi: 10.1038/291239a0. [DOI] [PubMed] [Google Scholar]
- Loring R. H., Jones S. W., Matthews-Bellinger J., Salpeter M. M. 125I-alpha-bungarotoxin. Effects of radiodecomposition on specific activity. J Biol Chem. 1982 Feb 10;257(3):1418–1423. [PubMed] [Google Scholar]
- Loring R. H., Salpeter M. M. Denervation increases turnover rate of junctional acetylcholine receptors. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2293–2297. doi: 10.1073/pnas.77.4.2293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Merlie J. P., Changeux J. P., Gros F. Acetylcholine receptor degradation measured by pulse chase labelling. Nature. 1976 Nov 4;264(5581):74–76. doi: 10.1038/264074a0. [DOI] [PubMed] [Google Scholar]
- Reiness C. G., Weinberg C. B., Hall Z. W. Antibody to acetylcholine receptor increases degradation of junctional and extrajunctional receptors in adult muscle. Nature. 1978 Jul 6;274(5666):68–70. doi: 10.1038/274068a0. [DOI] [PubMed] [Google Scholar]
- Salpeter M. M., Harris R. Distribution and turnover rate of acetylcholine receptors throughout the junction folds at a vertebrate neuromuscular junction. J Cell Biol. 1983 Jun;96(6):1781–1785. doi: 10.1083/jcb.96.6.1781. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Salpeter M. M., Loring R. H. Nicotinic acetylcholine receptors in vertebrate muscle: properties, distribution and neural control. Prog Neurobiol. 1985;25(4):297–325. doi: 10.1016/0301-0082(85)90018-8. [DOI] [PubMed] [Google Scholar]
- Schuetze S. M., Vicini S. Apparent acetylcholine receptor channel conversion at individual rat soleus end-plates in vitro. J Physiol. 1986 Jun;375:153–167. doi: 10.1113/jphysiol.1986.sp016111. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stanley E. F., Drachman D. B. Denervation accelerates the degradation of junctional acetylcholine receptors. Exp Neurol. 1981 Aug;73(2):390–396. doi: 10.1016/0014-4886(81)90274-0. [DOI] [PubMed] [Google Scholar]
- Stanley E. F., Drachman D. B. Rapid degradation of "new" acetylcholine receptors at neuromuscular junctions. Science. 1983 Oct 7;222(4619):67–69. doi: 10.1126/science.6623057. [DOI] [PubMed] [Google Scholar]
- Steinbach J. H., Merlie J., Heinemann S., Bloch R. Degradation of junctional and extrajunctional acetylcholine receptors by developing rat skeletal muscle. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3547–3551. doi: 10.1073/pnas.76.7.3547. [DOI] [PMC free article] [PubMed] [Google Scholar]
