Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Oct 1;103(4):1587–1593. doi: 10.1083/jcb.103.4.1587

Embryonic avian cornea contains layers of collagen with greater than average stability

PMCID: PMC2114328  PMID: 3771649

Abstract

A unique morphological feature of the embryonic avian cornea is the uniformity of its complement of striated collagen fibrils, each of which has a diameter of 25 nm. We have asked whether this apparent morphological uniformity also reflects an inherent uniformity of the structural and physical properties of these fibrils. For this we have examined the in situ thermal stability of the type I collagen within these fibrils. Corneal tissue sections were reacted at progressively higher temperatures with conformation-dependent monoclonal antibodies directed against the triple-helical domain of the type I collagen molecule. These studies show that the cornea contains layers of collagen fibrils with greater than average stability. The two most prominent of these extend uninterrupted across the entire width of the cornea, and then appear to insert into thick bundles of scleral collagen, which in turn appear to insert into the scleral ossicles, a ring of bony plates which circumscribe the sclera of the avian eye. Once formed, the bands may act to stabilize the shape of the cornea or, conversely, to alter it during accommodation.

Full Text

The Full Text of this article is available as a PDF (1.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bard J. B., Higginson K. Fibroblast-collagen interactions in the formation of the secondary stroma of the chick cornea. J Cell Biol. 1977 Sep;74(3):816–827. doi: 10.1083/jcb.74.3.816. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birk D. E., Trelstad R. L. Extracellular compartments in matrix morphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J Cell Biol. 1984 Dec;99(6):2024–2033. doi: 10.1083/jcb.99.6.2024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COULOMBRE A. J., COULOMBRE J. L. The skeleton of the eye. I. Conjunctival papillae and scleral ossicles. Dev Biol. 1962 Dec;5:382–401. doi: 10.1016/0012-1606(62)90020-9. [DOI] [PubMed] [Google Scholar]
  4. Coulombre J., Coulombre A. Corneal development. V. Treatment of five-day-old embryos of domestic fowl with 6-diazo-5-oxo-L-norleucine (DON). Dev Biol. 1975 Aug;45(2):291–303. doi: 10.1016/0012-1606(75)90067-6. [DOI] [PubMed] [Google Scholar]
  5. Fitch J. M., Gross J., Mayne R., Johnson-Wint B., Linsenmayer T. F. Organization of collagen types I and V in the embryonic chicken cornea: monoclonal antibody studies. Proc Natl Acad Sci U S A. 1984 May;81(9):2791–2795. doi: 10.1073/pnas.81.9.2791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. GROSS J. THERMAL DENATURATION OF COLLAGEN IN THE DISPERSED AND SOLID STATE. Science. 1964 Feb 28;143(3609):960–961. doi: 10.1126/science.143.3609.960. [DOI] [PubMed] [Google Scholar]
  7. Hyashi T., Curran-Patel S., Prockop D. J. Thermal stability of the triple helix of type I procollagen and collagen. Precautions for minimizing ultraviolet damage to proteins during circular dichroism studies. Biochemistry. 1979 Sep 18;18(19):4182–4187. doi: 10.1021/bi00586a022. [DOI] [PubMed] [Google Scholar]
  8. Linsenmayer T. F., Fitch J. M., Gross J., Mayne R. Are collagen fibrils in the developing avian cornea composed of two different collagen types? Evidence from monoclonal antibody studies. Ann N Y Acad Sci. 1985;460:232–245. doi: 10.1111/j.1749-6632.1985.tb51171.x. [DOI] [PubMed] [Google Scholar]
  9. Linsenmayer T. F., Fitch J. M., Schmid T. M., Zak N. B., Gibney E., Sanderson R. D., Mayne R. Monoclonal antibodies against chicken type V collagen: production, specificity, and use for immunocytochemical localization in embryonic cornea and other organs. J Cell Biol. 1983 Jan;96(1):124–132. doi: 10.1083/jcb.96.1.124. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Linsenmayer T. F., Gibney E., Fitch J. M., Gross J., Mayne R. Thermal stability of the helical structure of type IV collagen within basement membranes in situ: determination with a conformation-dependent monoclonal antibody. J Cell Biol. 1984 Oct;99(4 Pt 1):1405–1409. doi: 10.1083/jcb.99.4.1405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Linsenmayer T. F., Hendrix M. J., Little C. D. Production and characterization of a monoclonal antibody to chicken type I collagen. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3703–3707. doi: 10.1073/pnas.76.8.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Linsenmayer T. F., Mentzer A., Irwin M. H., Waldrep N. K., Mayne R. Avian type VI collagen. Monoclonal antibody production and immunohistochemical identification as a major connective tissue component of cornea and skeletal muscle. Exp Cell Res. 1986 Aug;165(2):518–529. doi: 10.1016/0014-4827(86)90604-x. [DOI] [PubMed] [Google Scholar]
  13. Peterkofsky B., Diegelmann R. Use of a mixture of proteinase-free collagenases for the specific assay of radioactive collagen in the presence of other proteins. Biochemistry. 1971 Mar 16;10(6):988–994. doi: 10.1021/bi00782a009. [DOI] [PubMed] [Google Scholar]
  14. Schmid T. M., Linsenmayer T. F. Immunohistochemical localization of short chain cartilage collagen (type X) in avian tissues. J Cell Biol. 1985 Feb;100(2):598–605. doi: 10.1083/jcb.100.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Snowden J. M. The stabilization of in vivo assembled collagen fibrils by proteoglycans/glycosaminoglycans. Biochim Biophys Acta. 1982 Apr 21;703(1):21–25. doi: 10.1016/0167-4838(82)90005-x. [DOI] [PubMed] [Google Scholar]
  16. Trelstad R. L., Coulombre A. J. Morphogenesis of the collagenous stroma in the chick cornea. J Cell Biol. 1971 Sep;50(3):840–858. doi: 10.1083/jcb.50.3.840. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES