Skip to main content
The Journal of Cell Biology logoLink to The Journal of Cell Biology
. 1986 Oct 1;103(4):1299–1313. doi: 10.1083/jcb.103.4.1299

A common spectrum of polypeptides occurs in secretion granule membranes of different exocrine glands

PMCID: PMC2114330  PMID: 3533952

Abstract

A highly purified membrane preparation from rat parotid secretion granules has been used as a comparative probe to examine the extent of compositional overlap in granule membranes of three other exocrine secretory tissues--pancreatic, lacrimal, and submandibular--from several standpoints. First, indirect immunofluorescent studies using a polyclonal polyspecific anti-parotid granule membrane antiserum has indicated a selective staining of granule membrane profiles in all acinar cells of all tissues. Second, highly purified granule membrane subfractions have been isolated from each exocrine tissue; comparative two-dimensional (isoelectric focusing; SDS) PAGE of radioiodinated granule membranes has identified 10-15 polypeptides of identical pI and apparent molecular mass. These species are likely to be integral membrane components since they are not extracted by either saponin- sodium sulfate or sodium carbonate (pH 11.5) treatments, and they do not have counterparts in the granule content. Finally, the identity among selected parotid and pancreatic radioiodinated granule membrane polypeptides has been documented using two-dimensional peptide mapping of chymotryptic and tryptic digests. These findings clearly indicate that exocrine secretory granules, irrespective of the nature of stored secretion, comprise a type of vesicular carrier with a common (and probably refined) membrane composition. Conceivably, the polypeptides identified carry out general functions related to exocrine secretion.

Full Text

The Full Text of this article is available as a PDF (5.8 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F., Nikaido K. Two-dimensional gel electrophoresis of membrane proteins. Biochemistry. 1976 Feb 10;15(3):616–623. doi: 10.1021/bi00648a026. [DOI] [PubMed] [Google Scholar]
  2. Ansorge W. Fast and sensitive detection of protein and DNA bands by treatment with potassium permanganate. J Biochem Biophys Methods. 1985 May;11(1):13–20. doi: 10.1016/0165-022x(85)90037-5. [DOI] [PubMed] [Google Scholar]
  3. Bader M. F., Aunis D. The 97-kD alpha-actinin-like protein in chromaffin granule membranes from adrenal medulla: evidence for localization on the cytoplasmic surface and for binding to actin filaments. Neuroscience. 1983 Jan;8(1):165–181. doi: 10.1016/0306-4522(83)90036-2. [DOI] [PubMed] [Google Scholar]
  4. Ball W. D., Redman R. S. Two independently regulated secretory systems within the acini of the submandibular gland of the perinatal rat. Eur J Cell Biol. 1984 Jan;33(1):112–122. [PubMed] [Google Scholar]
  5. Buckley K., Kelly R. B. Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol. 1985 Apr;100(4):1284–1294. doi: 10.1083/jcb.100.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cameron R. S., Castle J. D. Isolation and compositional analysis of secretion granules and their membrane subfraction from the rat parotid gland. J Membr Biol. 1984;79(2):127–144. doi: 10.1007/BF01872117. [DOI] [PubMed] [Google Scholar]
  7. Cascieri M. A., Somberg E. W. Two-dimensional electrophoretic analysis of secretory-granule, granule-membrane, and plasma-membrane proteins of rat parotid cells. Cell Tissue Res. 1983;234(1):93–108. doi: 10.1007/BF00217404. [DOI] [PubMed] [Google Scholar]
  8. Castle J. D., Cameron R. S., Patterson P. L., Ma A. K. Identification of high molecular weight antigens structurally related to gamma-glutamyl transferase in epithelial tissues. J Membr Biol. 1985;87(1):13–26. doi: 10.1007/BF01870695. [DOI] [PubMed] [Google Scholar]
  9. Cope G. H., Williams M. A. Restitution of granule stores in the rabbit parotid gland after isoprenaline-induced secretion. A stereological analysis of volume parameters. Cell Tissue Res. 1980;209(2):315–327. doi: 10.1007/BF00237634. [DOI] [PubMed] [Google Scholar]
  10. De Camilli P., Cameron R., Greengard P. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. I. Its general distribution in synapses of the central and peripheral nervous system demonstrated by immunofluorescence in frozen and plastic sections. J Cell Biol. 1983 May;96(5):1337–1354. doi: 10.1083/jcb.96.5.1337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elder J. H., Pickett R. A., 2nd, Hampton J., Lerner R. A. Radioiodination of proteins in single polyacrylamide gel slices. Tryptic peptide analysis of all the major members of complex multicomponent systems using microgram quantities of total protein. J Biol Chem. 1977 Sep 25;252(18):6510–6515. [PubMed] [Google Scholar]
  12. Farquhar M. G., Palade G. E. The Golgi apparatus (complex)-(1954-1981)-from artifact to center stage. J Cell Biol. 1981 Dec;91(3 Pt 2):77s–103s. doi: 10.1083/jcb.91.3.77s. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fujiki Y., Hubbard A. L., Fowler S., Lazarow P. B. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J Cell Biol. 1982 Apr;93(1):97–102. doi: 10.1083/jcb.93.1.97. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Griffiths G., Simons K., Warren G., Tokuyasu K. T. Immunoelectron microscopy using thin, frozen sections: application to studies of the intracellular transport of Semliki Forest virus spike glycoproteins. Methods Enzymol. 1983;96:466–485. doi: 10.1016/s0076-6879(83)96041-x. [DOI] [PubMed] [Google Scholar]
  15. Herzog V., Miller F. The localization of endogenous peroxidase in the lacrimal gland of the rat during postnatal development. Electron microscope cytochemical and biochemical studies. J Cell Biol. 1972 Jun;53(3):662–680. doi: 10.1083/jcb.53.3.662. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Herzog V., Sies H., Miller F. Exocytosis in secretory cells of rat lacrimal gland. Peroxidase release from lobules and isolated cells upon cholinergic stimulation. J Cell Biol. 1976 Sep;70(3):692–706. doi: 10.1083/jcb.70.3.692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Howell K. E., Palade G. E. Hepatic Golgi fractions resolved into membrane and content subfractions. J Cell Biol. 1982 Mar;92(3):822–832. doi: 10.1083/jcb.92.3.822. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inoue T., Shimono M., Yamamura T. Unusual lamellar inclusions in secretory granules of the rat submandibular gland induced by long-term repeated administration of isoproterenol. J Electron Microsc (Tokyo) 1980;29(3):261–265. [PubMed] [Google Scholar]
  19. Jahn R., Schiebler W., Ouimet C., Greengard P. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4137–4141. doi: 10.1073/pnas.82.12.4137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Matthew W. D., Tsavaler L., Reichardt L. F. Identification of a synaptic vesicle-specific membrane protein with a wide distribution in neuronal and neurosecretory tissue. J Cell Biol. 1981 Oct;91(1):257–269. doi: 10.1083/jcb.91.1.257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Muenzer J., Bildstein C., Gleason M., Carlson D. M. Purification of proline-rich proteins from parotid glands of isoproterenol-treated rats. J Biol Chem. 1979 Jul 10;254(13):5623–5628. [PubMed] [Google Scholar]
  23. Müller O. M., Gerber H. B. Circadian changes of the rat pancreas acinar cell. A quantitative morphological investigation. Scand J Gastroenterol Suppl. 1985;112:12–19. doi: 10.3109/00365528509092208. [DOI] [PubMed] [Google Scholar]
  24. Nieuw Amerongen A. V., Oderkerk C. H., Bos-Vreugdenhil A. P., Roukema P. A. Secretory granules of murine salivary glands. A morphological, biochemical and morphological, biochemical and immunochemical study of submandibular and parotid granules. J Biol Buccale. 1982 Mar;10(1):11–30. [PubMed] [Google Scholar]
  25. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  26. Orstavik T. B. The distribution and secretion of kallikrein in some exocrine organs of the rat. Acta Physiol Scand. 1978 Dec;104(4):431–442. doi: 10.1111/j.1748-1716.1978.tb06298.x. [DOI] [PubMed] [Google Scholar]
  27. Palade G. Intracellular aspects of the process of protein synthesis. Science. 1975 Aug 1;189(4200):347–358. doi: 10.1126/science.1096303. [DOI] [PubMed] [Google Scholar]
  28. Papermaster D. S., Converse C. A., Zorn M. Biosynthetic and immunochemical characterization of large protein in frog and cattle rod outer segment membranes. Exp Eye Res. 1976 Aug;23(2):105–115. doi: 10.1016/0014-4835(76)90194-9. [DOI] [PubMed] [Google Scholar]
  29. Pâquet M. R., St-Jean P., Roberge M., Beaudoin A. R. Isolation of zymogen granules from rat pancreas and characterization of their membrane proteins. Eur J Cell Biol. 1982 Aug;28(1):20–26. [PubMed] [Google Scholar]
  30. Ronzio R. A., Kronquist K. E., Lewis D. S., MacDonald R. J., Mohrlok S. H., O'Donnell J. J., Jr Glycoprotein synthesis in the adult rat pancreas. IV. Subcellular distribution of membrane glycoproteins. Biochim Biophys Acta. 1978 Mar 21;508(1):65–84. doi: 10.1016/0005-2736(78)90189-x. [DOI] [PubMed] [Google Scholar]
  31. Shaw P. H., Held W. A., Hastie N. D. The gene family for major urinary proteins: expression in several secretory tissues of the mouse. Cell. 1983 Mar;32(3):755–761. doi: 10.1016/0092-8674(83)90061-2. [DOI] [PubMed] [Google Scholar]
  32. Speicher D. W., Morrow J. S., Knowles W. J., Marchesi V. T. A structural model of human erythrocyte spectrin. Alignment of chemical and functional domains. J Biol Chem. 1982 Aug 10;257(15):9093–9101. [PubMed] [Google Scholar]
  33. Wiedenmann B., Franke W. W. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985 Jul;41(3):1017–1028. doi: 10.1016/s0092-8674(85)80082-9. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Cell Biology are provided here courtesy of The Rockefeller University Press

RESOURCES